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Al and remote sensing will be vital to the environmental industry.
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Satellite/plane data is widely available but low spatial or
temporal resolution.




We are finally seeing the promise of machine learning being
delivered, but environmental applications are lagging.
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Modern day computer processing power has opened the door to
widespread use of Al.
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Modern day computer processing power has opened the door to
widespread use of Al.
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An expert-centered digital pipeline empowers better decisions.
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Remote Sensing Basics Agenda

Machine Learning Basics
Site Feasibility: Wetland delineation

[and Management: Invasive species identification

Remediation: Excavation and Capping/

Tree Monitoring
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Remote Sensing

= Common collection platforms

— Satellite, plane, UAVs/drones

—= COoOmmon sensors

— camera, thermal, lidar
multispectral, hyperspectral

- Common products

— Imagery, elevation

- Choosing the right tools

— Site size, project needs




Automation
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learning
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Automation's role in machine learning
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Machine Learning Basics

Artificial Intelligence

Machine Learning
\

Deep Learning
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Machine Learning Basics

Multiple features 1 property to classify or quantify
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(easier/cheaper/faster to collect) (difficult /expensive/slower to collect)
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Machine Learning Basics

Model Variables Target Class
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Machine Learning Basics

Training Data




Train the Model
Data Ground Machine
Inputs Truthing Learning
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Model Accuracy
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Land Management: Invasive & Native species identification

= How do we identify invasive species and assess the effectiveness of
treatments to remove them?
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_—
Traditional approach for invasive species mapping.
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CDM Smith developed patent -pending data collection
methods to increase efficiency and improve model accuracy.
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Reflectance (%)

Machine learning can use spectral patterns to identify species.

Exotic Primrose Willow
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CDM Smith developed a high accuracy map of native and
invasive species using machine learning.

Species or land cover type
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The machine learning model can identify and quantify living
and dead Brazilian pepper.

Species or land cover type
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The machine learning model can identify and q
Brazilian pepper.

A e

| Dead Brazilian pepper

uantify dead
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Looking forward: machine learning models using high resolution satellite data
increases spatial and temporal tracking of invasives and biodiversity.
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Case Study: Remedial Excavation and Capping — Jacksonville, FL
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CDM Smith used automation and machine learning to monitor excavation
and verify cap placement at a remediation site.

- Objectives — Sjze
— Track contractor performance _ 50 acres
— Earth volume measurement
— Compliance

- Location

— Ribault River,
Jacksonville, FL

- Sensors
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Phase | of the remediation included excavation of 2 feet and capping

with clean fill.

Remedial Action Plan

Approximate
Excavation and
Fill Depths
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High resolution cameras are used to collect digital imagery of the
site monthly.
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High resolution aerial imagery documents site conditions.
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A 3D model is created for the site from each monthly drone flight.




CDM Smith uses automation to track topographic changes over time.

Elevation Change
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After capping wetland trees were planted in a portion of the site
to comply with state and federal permit requirements.
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Ground truthing data was collected for use in a machine learning model.

Machine
Leaming Model

=




to monitor the wetland restoration area.

Regular digital camera and multispectral sensor were used

e
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Multispectral sensor collects near-infrared and provides data on vegetation.

Multispectral
Drone Data

b, :&*
NDVI Vegetation Metric
3 inch/pixel multispectral data




The spectral signhatures are often different between species.
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Machine learning is necessary to analyze the multifaceted high-volume dataset.
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CDM Smith used a machine learning model to identify tree species in the
restoration area.

MACHINE
LEARNING MODEL MODEL

PREDICTIONS

1
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Red Maple
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Site Feasibility: Wetland delineation

= How do we locate wetlands to quantify how much land is available for
development?

h Jacksonville

FDEP, Exrl, HERE, Gamrrin, SafeGraph, FAD, MET/NASA, USGS, EPA, NP3
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NDVI from NAIP LiDAR Products SSURGO Soils Data



What defines a wetland and how can we predict their location?
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Machine learning models require data to be in certain formats.
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Machine learning models can provide nuanced evaluations of wetlands.

m Wetland Boundaries
Wetland Probability
P High

B Low

0 0.25 0.5




Complex environmental systems can require deep learning models.




Deep Learning models often require data to be broken down.




The deep learning model was better at evaluating “blind” sites.

m Wetland Boundaries

Wetland Probability
N High

B Low




.
CDM Smith applied our deep learning model to a MoDOT corridor study.

Deep Learning
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CDM Smith applied our deep learning model to a MoDOT corridor study.

Wetland Probability
P High

. Low
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Looking forward: expanding capabilities for wetland delineation

= Drive strategic field

collection/ verification design

- Support permitting
- Resiliency planning

- Access changes over time
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Machine learning and advanced remote sensing can help develop
environmental solutions for the future.
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Sky Wave provides multiple benefits to environmental projects.
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Contact us: skywave@cdmsmith.com
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