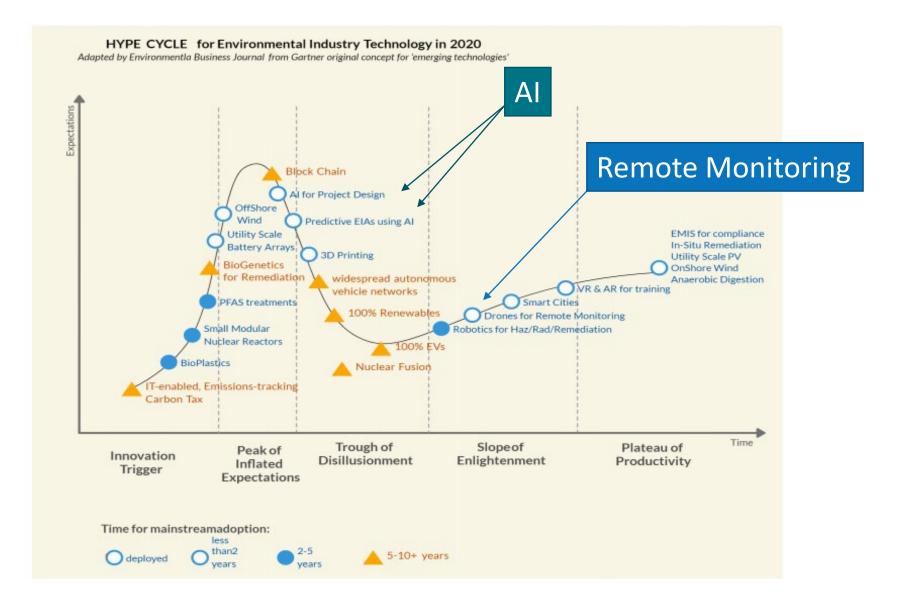
Navigating the Digital Expanse:

Empowering Environmental Decisions with Machine Learning and Remote Sensing

Devin Wilson, PWS

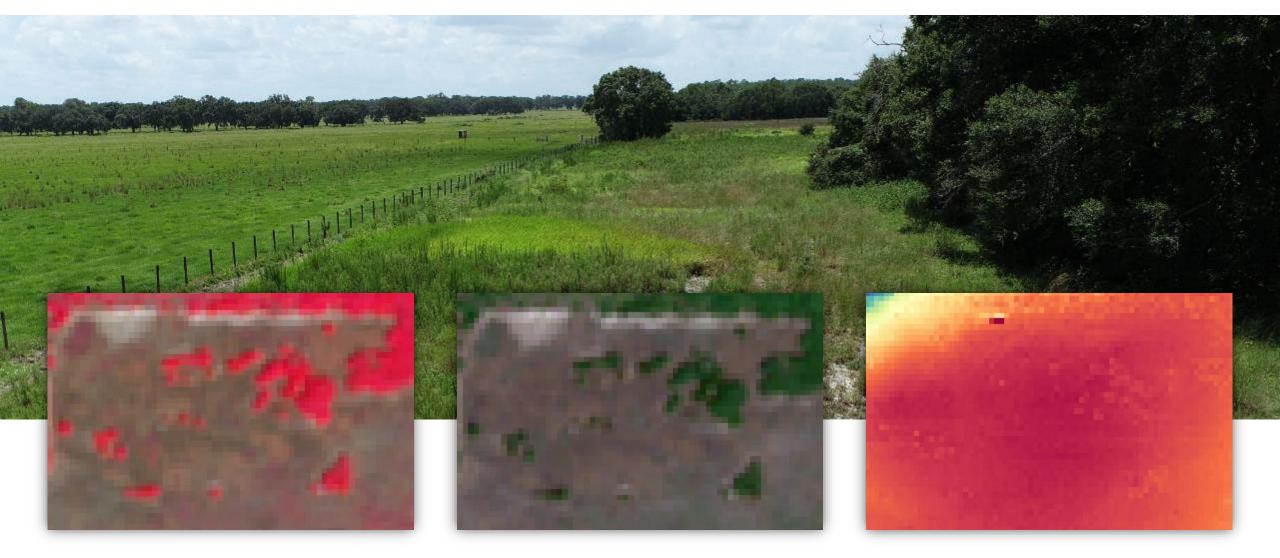
May 2024

Al and remote sensing will be vital to the environmental industry.



Field work is an invaluable but limiting factor.

Satellite/plane data is widely available but low spatial or temporal resolution.



We are finally seeing the promise of machine learning being delivered, but environmental applications are lagging.

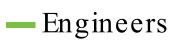


Modern day computer processing power has opened the door to widespread use of AI.

Modern day computer processing power has opened the door to widespread use of AI.

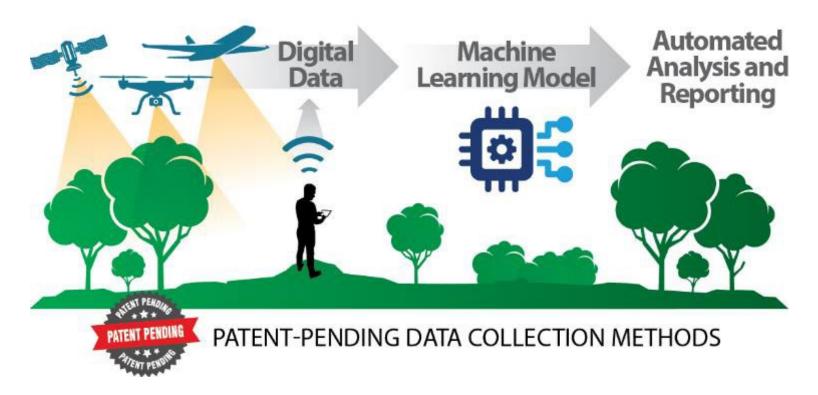
An expert-centered digital pipeline empowers better decisions.

∕∿sky wave™



Surveyors

- Geologists
- Scientists
- FAA-certified drone pilots
- Remote sensing
- Machine learning



Remote Sensing Basics

Machine Learning Basics

Site Feasibility: Wetland delineation

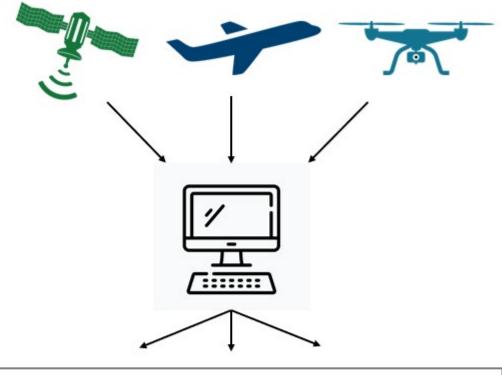
Land Management: Invasive species identification

Remediation: Excavation and Capping/ Tree Monitoring

Agenda

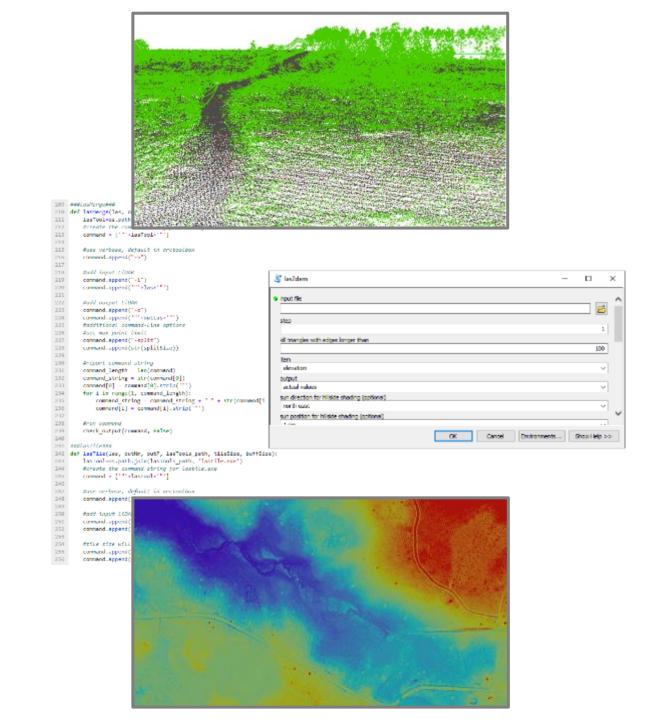
Remote Sensing

- Common collection platforms
 - Satellite, plane, UAVs/drones
- Common sensors
 - camera, thermal, lidar multispectral, hyperspectral
- Common products
 - Imagery, elevation
- Choosing the right tools
 - Site size, project needs

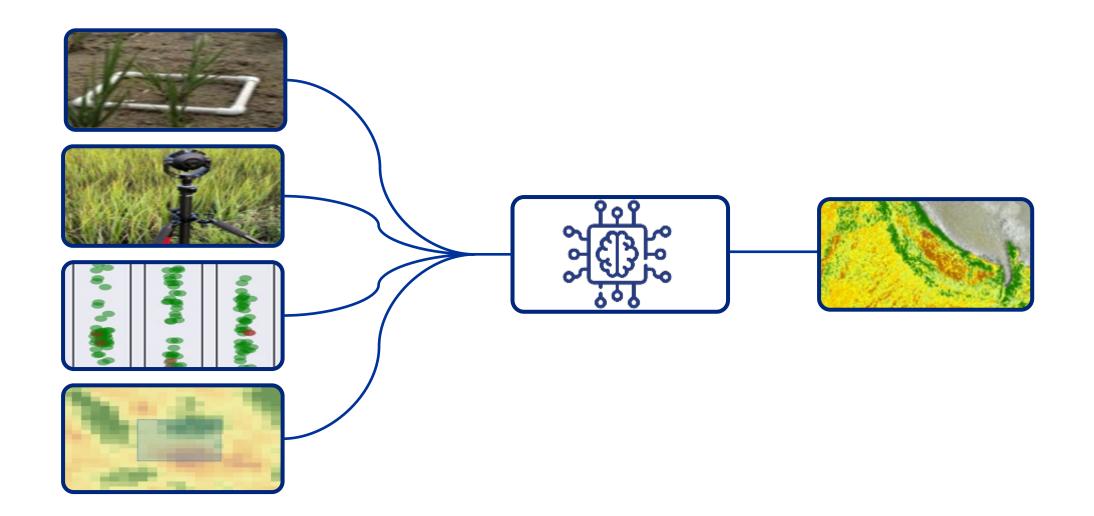


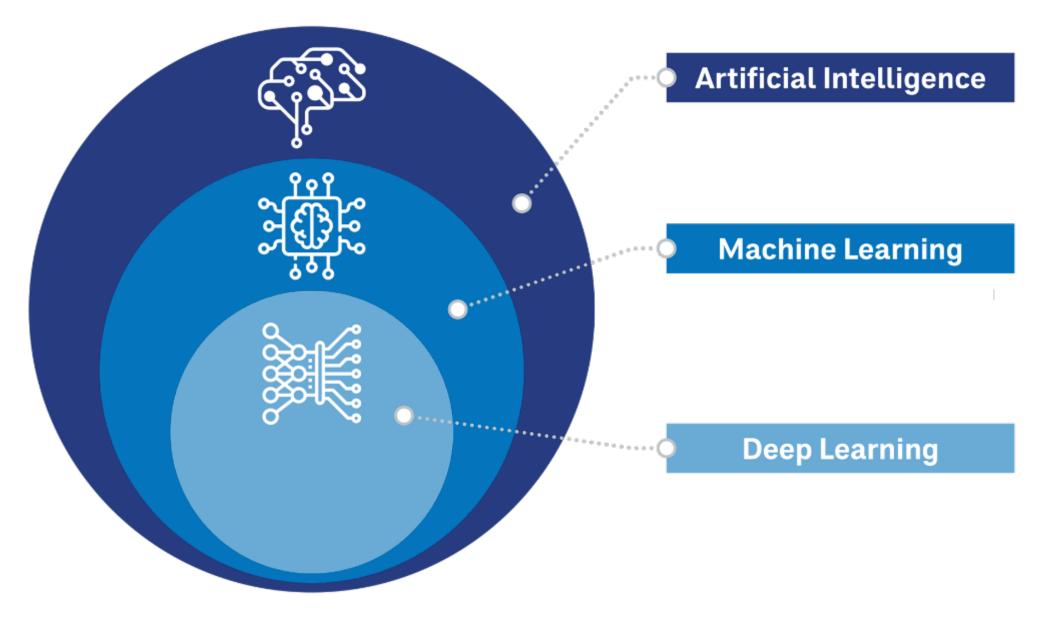
Automation

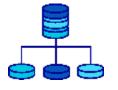
- Automation ≠machine learning
- Automation is a pivotal part of the process
- How can we make things easier?
 - Automate it!

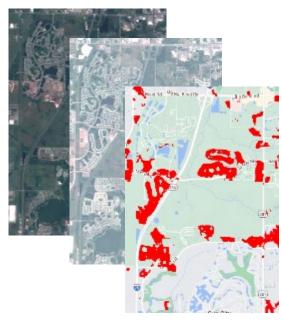


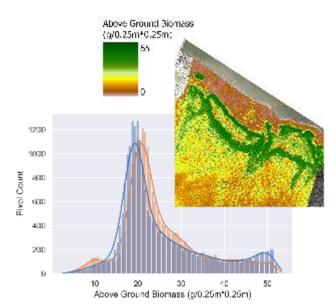
Automation's role in machine learning



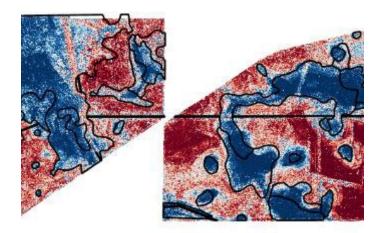






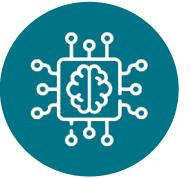


Segment



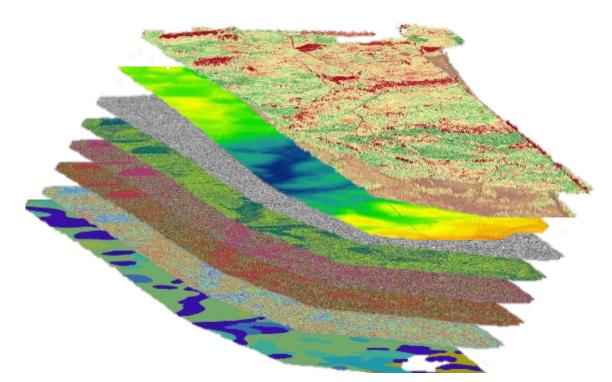
Multiple features

(easier/cheaper/faster to collect)

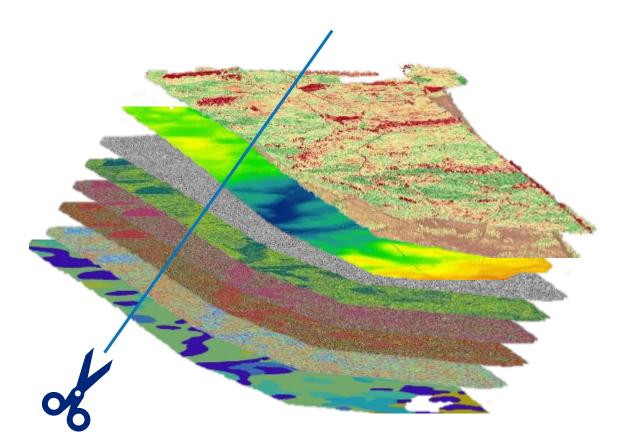


1 property to classify or quantify

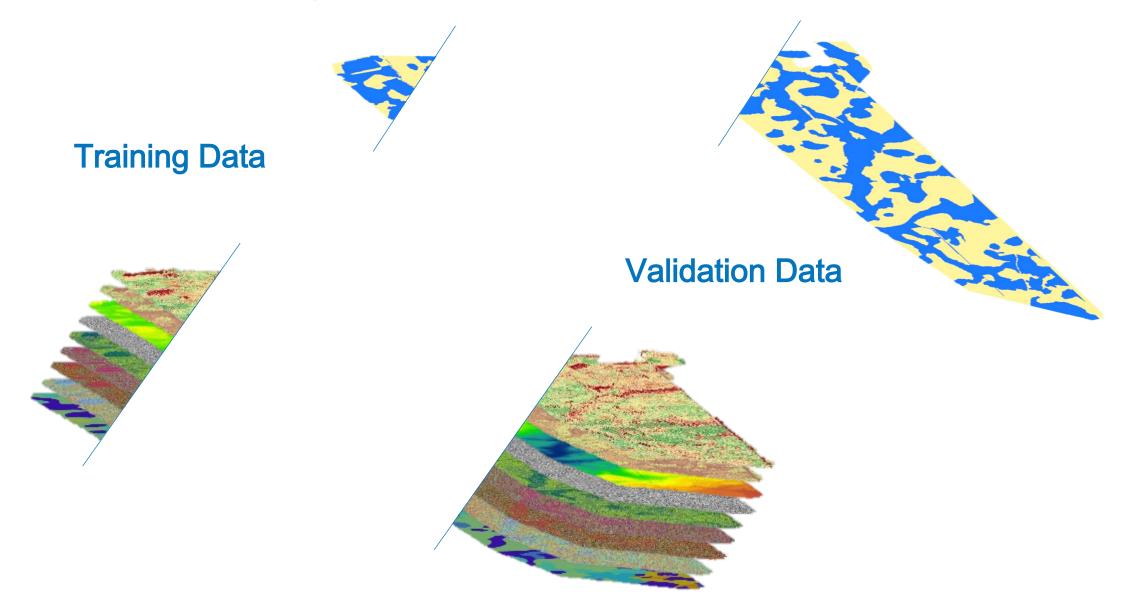
(difficult /expensive/slower to collect)



Model Variables



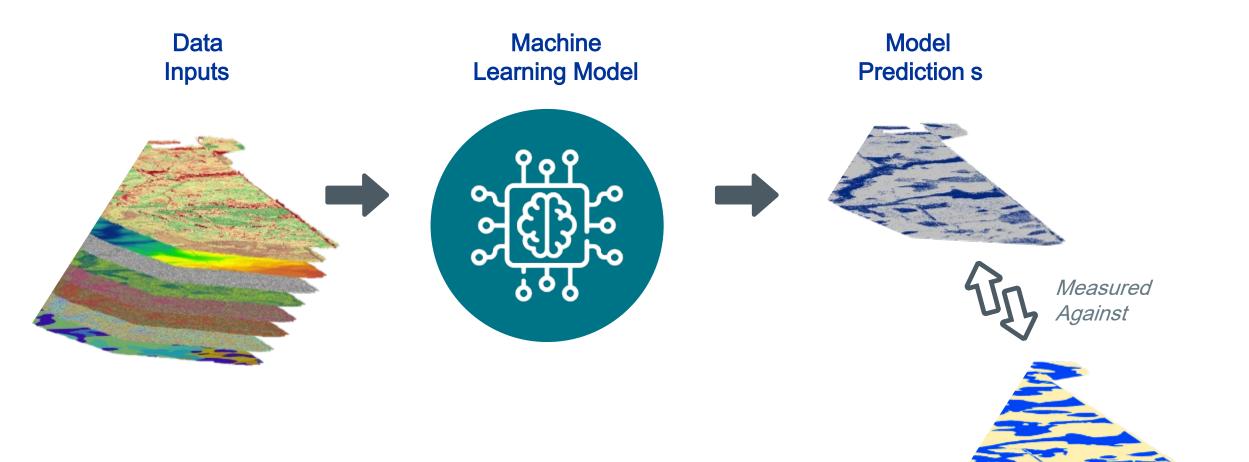
Target Class





Train the Model

Model Accuracy



Ground Truthing

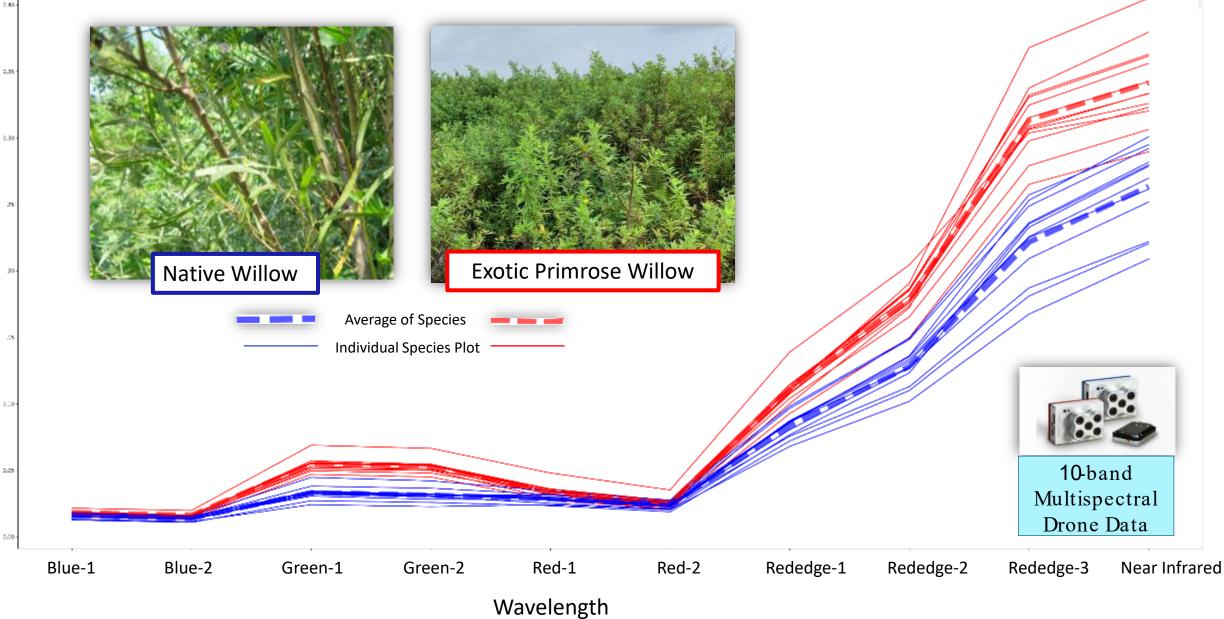
Land Management: Invasive & Native species identification

How do we identify invasive species and assess the effectiveness of treatments to remove them?

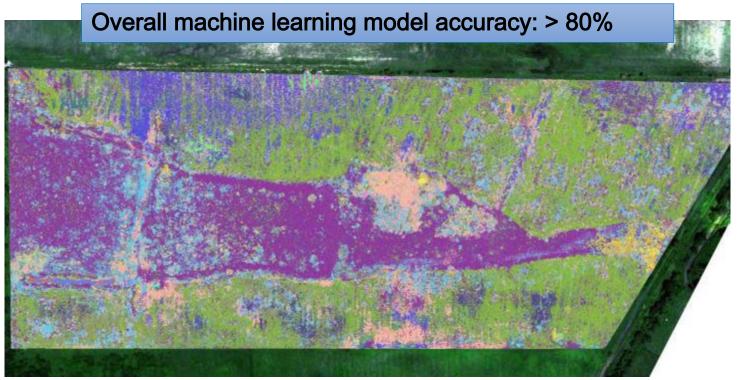
Traditional approach for invasive species mapping.

CDM Smith developed patent -pending data collection methods to increase efficiency and improve model accuracy.

Machine learning can use spectral patterns to identify species.

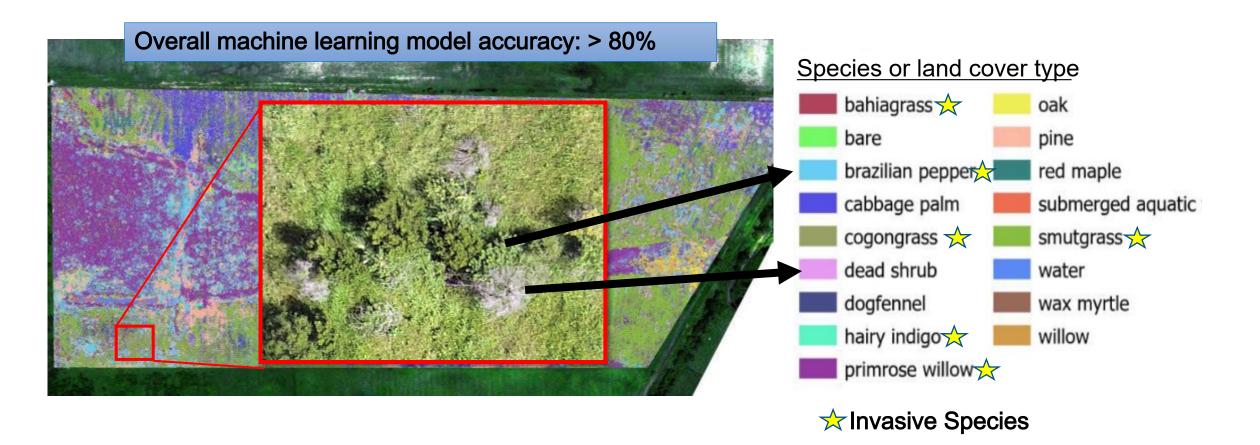


CDM Smith developed a high accuracy map of native and invasive species using machine learning.



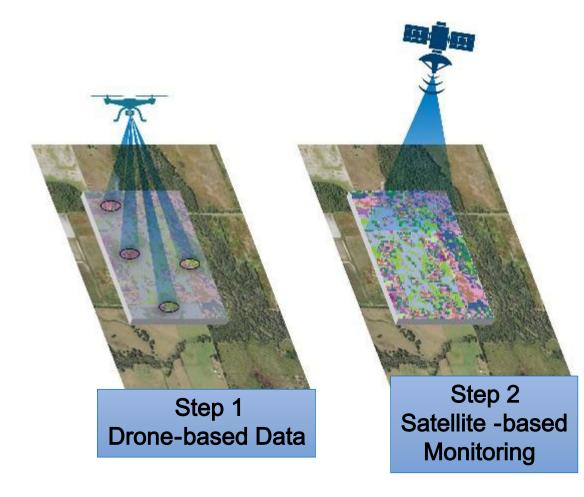
 \bigstar Invasive Species

The machine learning model can identify and quantify living and dead Brazilian pepper.



The machine learning model can identify and quantify dead Brazilian pepper.

Looking forward: machine learning models using high resolution satellite data increases spatial and temporal tracking of invasives and biodiversity.



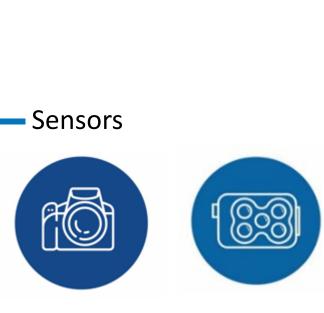
Case Study: Remedial Excavation and Capping – Jacksonville, FL

CDM Smith used automation and machine learning to monitor excavation and verify cap placement at a remediation site.

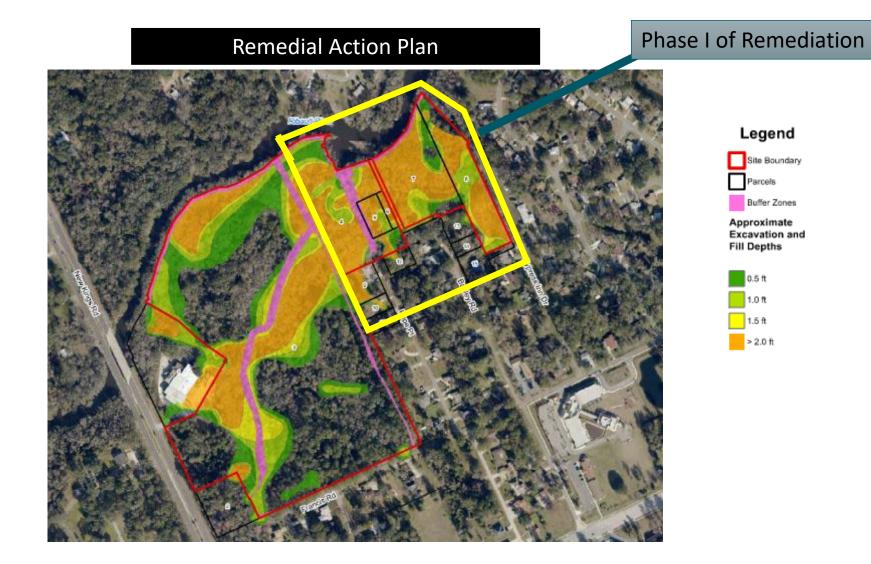
— Objectives

- Track contractor performance
- Earth volume measurement
- Compliance
- Location
 - Ribault River,
 Jacksonville, FL

- 50 acres



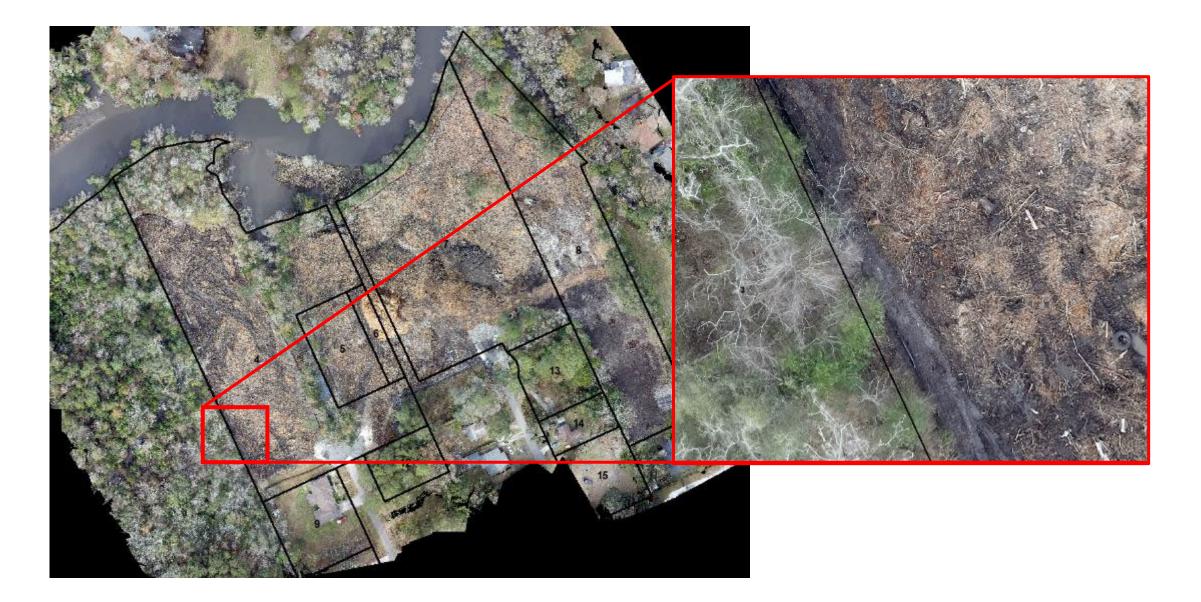
Phase I of the remediation included excavation of 2 feet and capping with clean fill.



High resolution cameras are used to collect digital imagery of the site monthly.

High resolution aerial imagery documents site conditions.

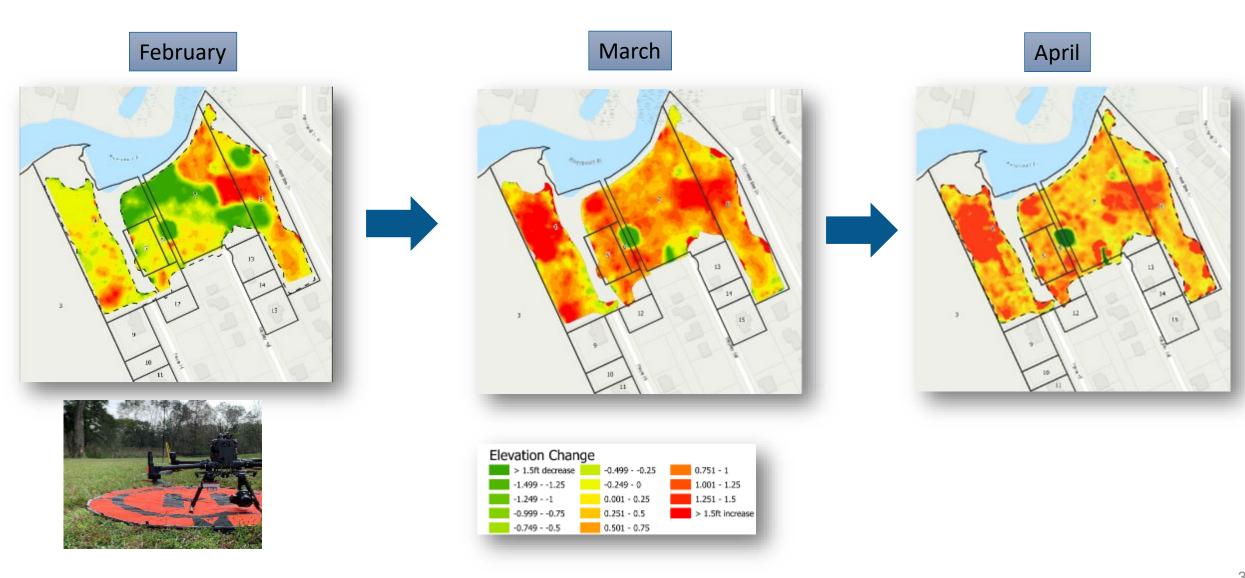
Imagery can be used to assess contractor performance.



A 3D model is created for the site from each monthly drone flight.

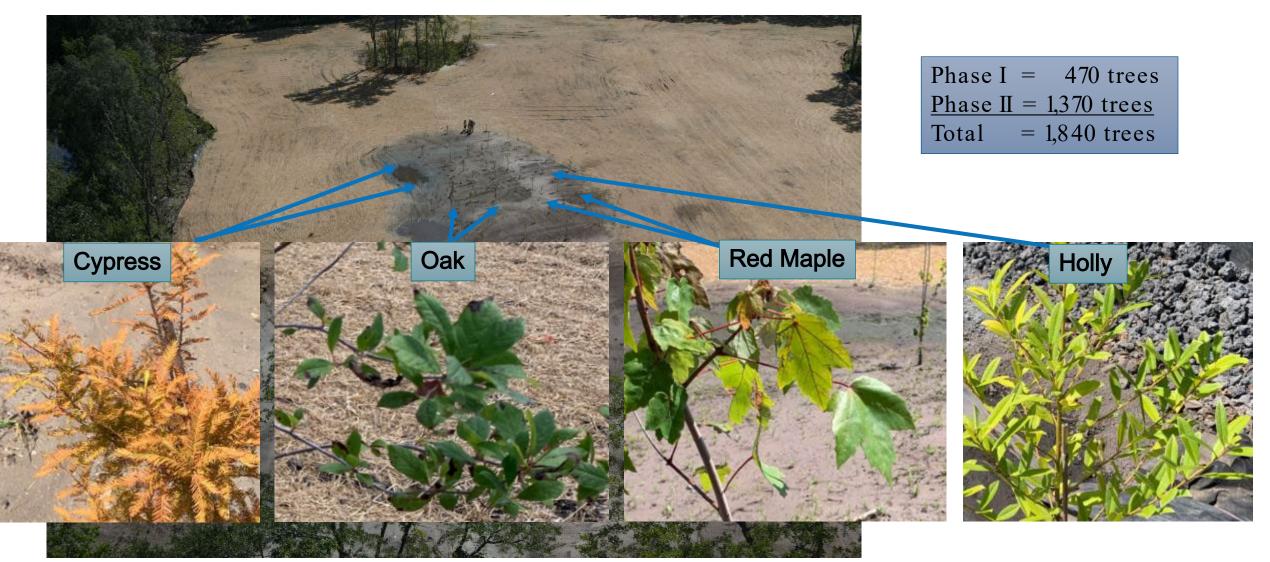
Drone-derived 3D Model

CDM Smith uses automation to track topographic changes over time.



After capping wetland trees were planted in a portion of the site to comply with state and federal permit requirements.

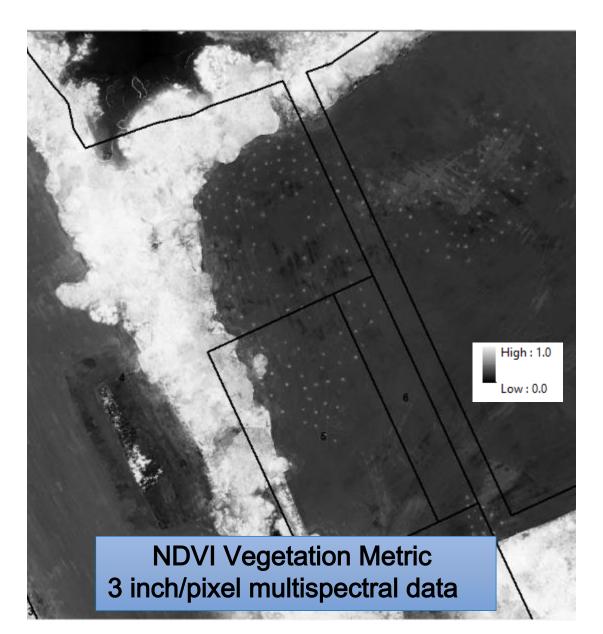
After capping wetland trees were planted in a portion of the site to comply with state and federal permit requirements.

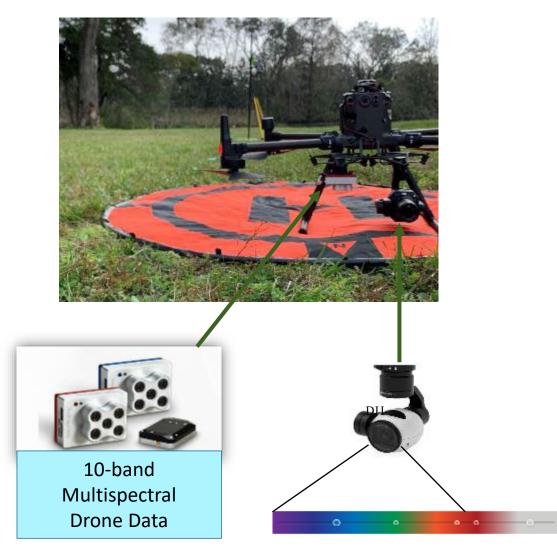


Ground truthing data was collected for use in a machine learning model.

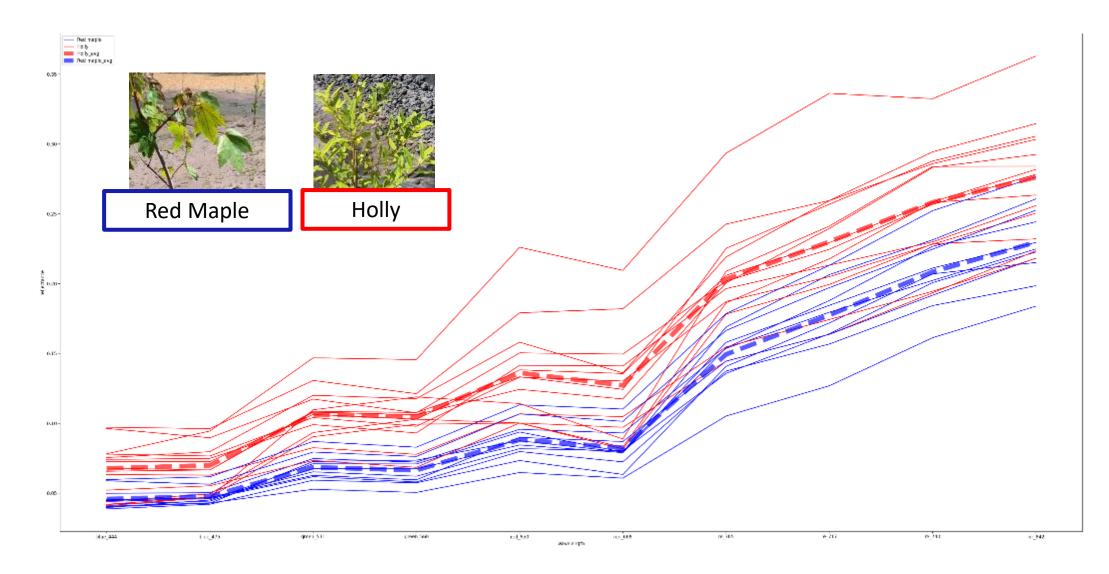
Regular digital camera and multispectral sensor were used to monitor the wetland restoration area.

Multispectral sensor collects near-infrared and provides data on vegetation.

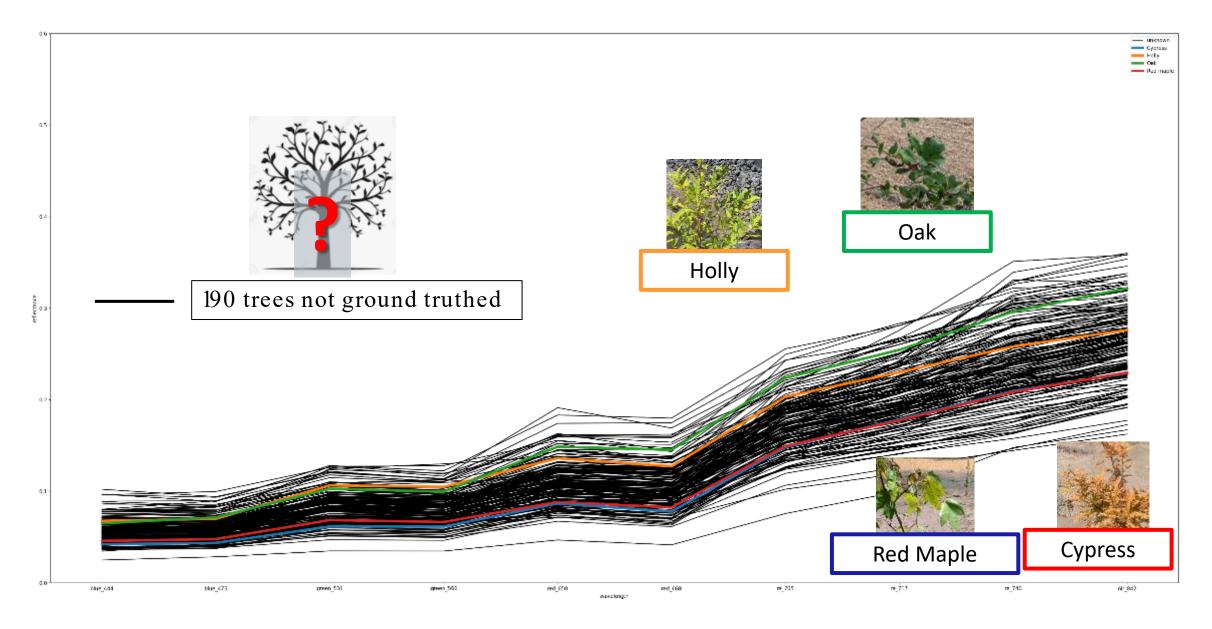




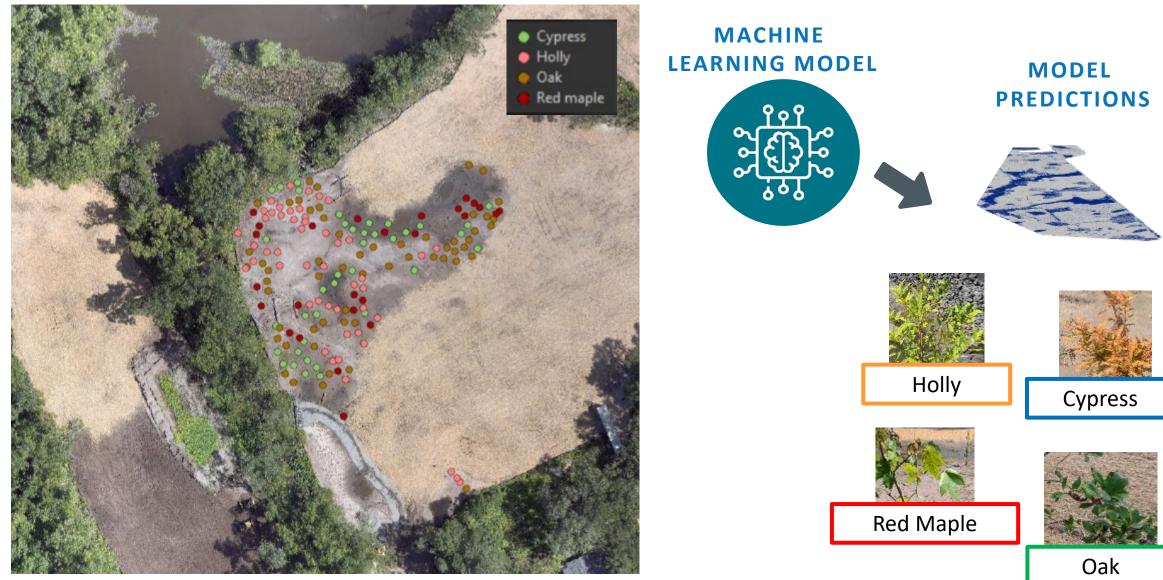
The spectral signatures are often different between species.



Machine learning is necessary to analyze the multifaceted high-volume dataset.



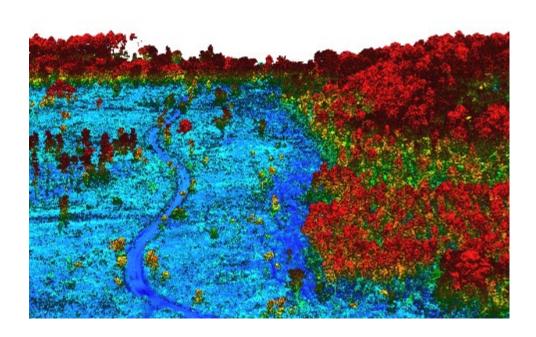
CDM Smith used a machine learning model to identify tree species in the restoration area.



Site Feasibility: Wetland delineation

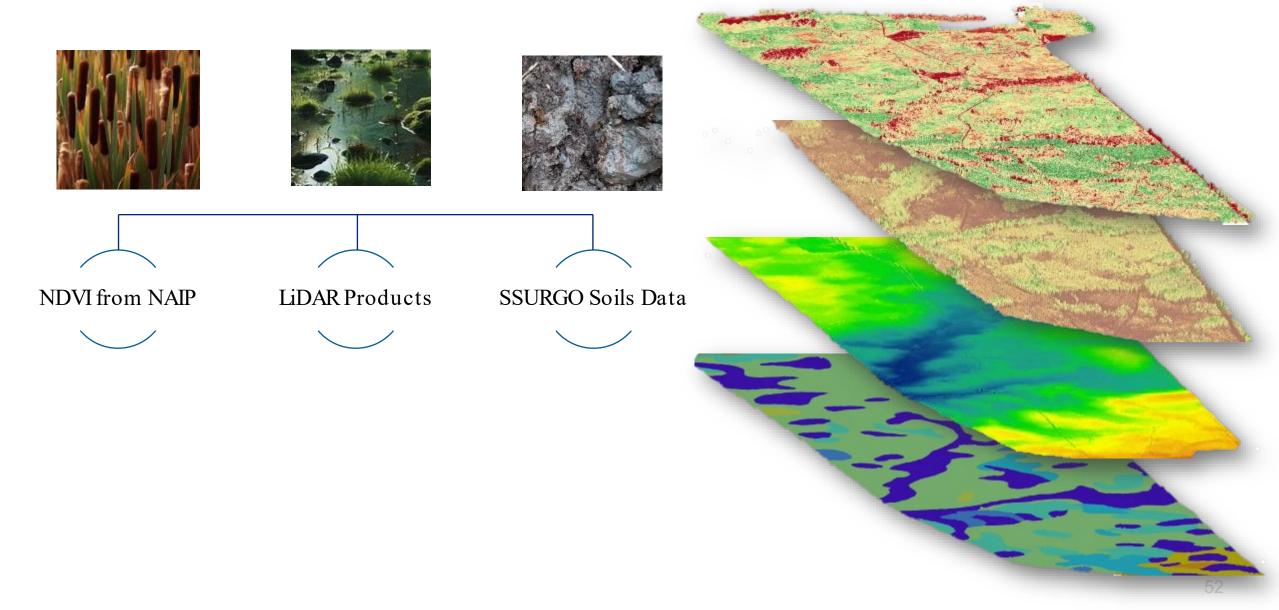
How do we locate wetlands to quantify how much land is available for development?



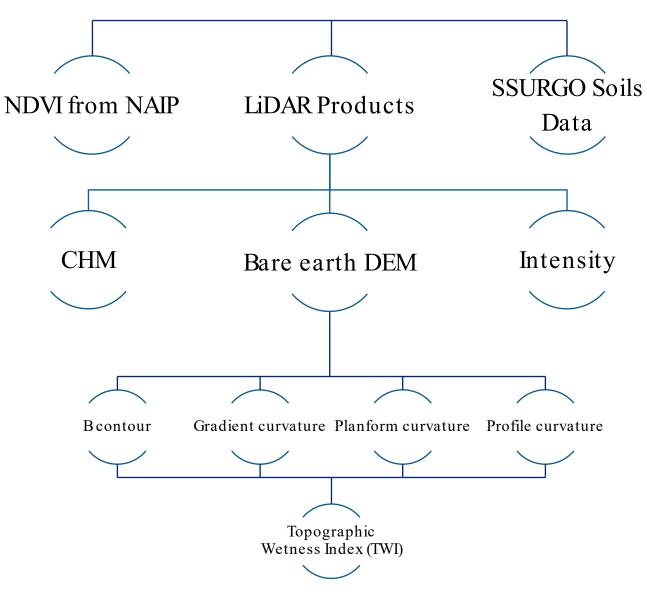


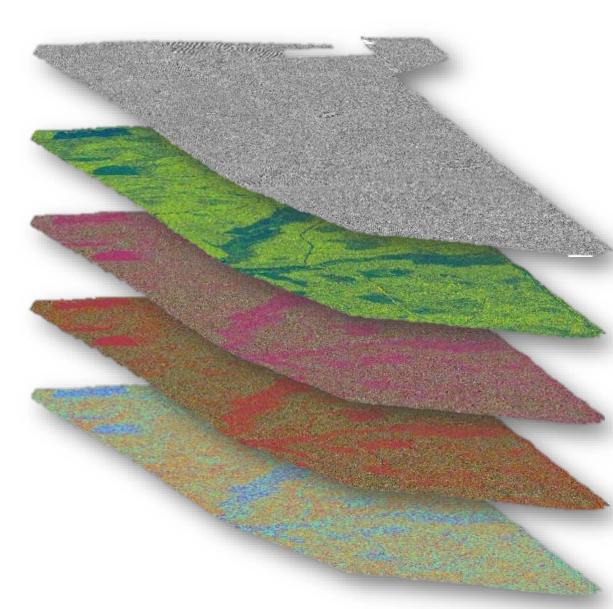
Traditional approach for delineating wetlands.

What defines a wetland and how can we predict their location?

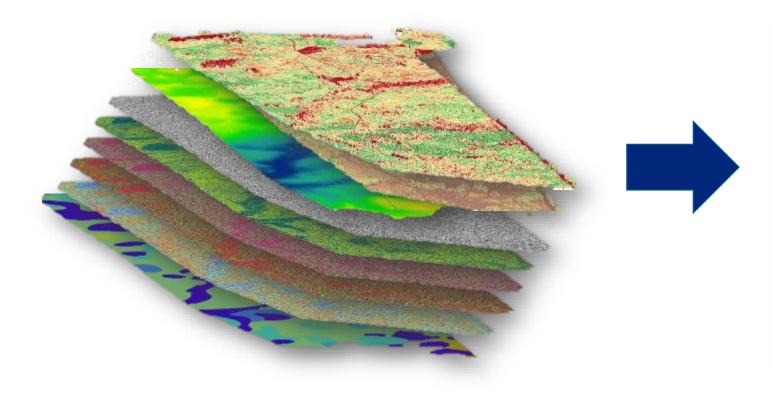


What defines a wetland and how can we predict their location?



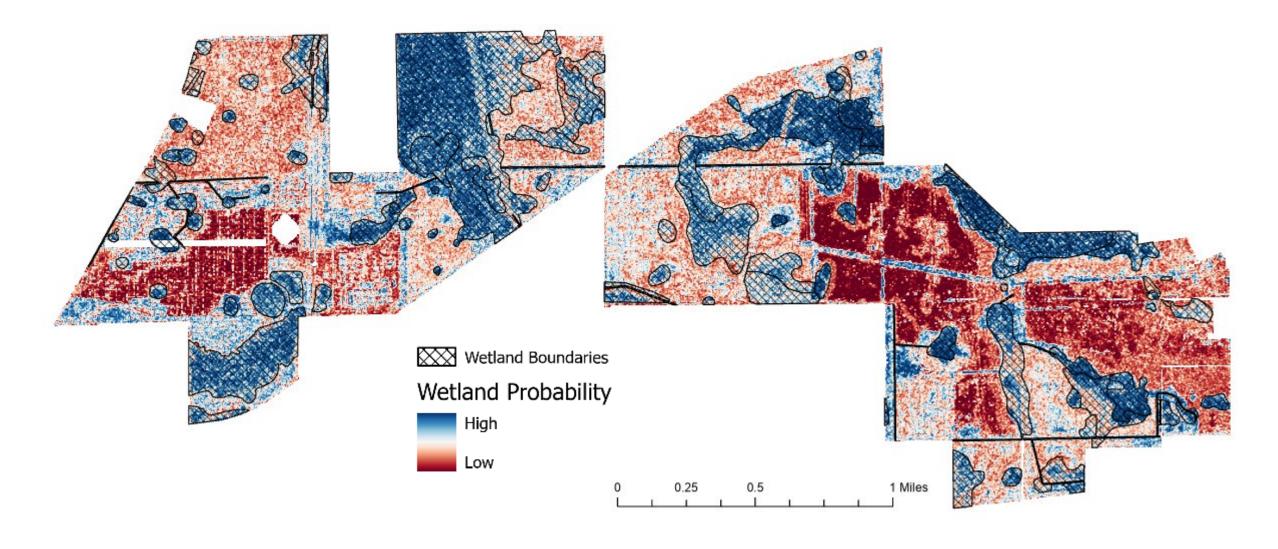


Machine learning models require data to be in certain formats.

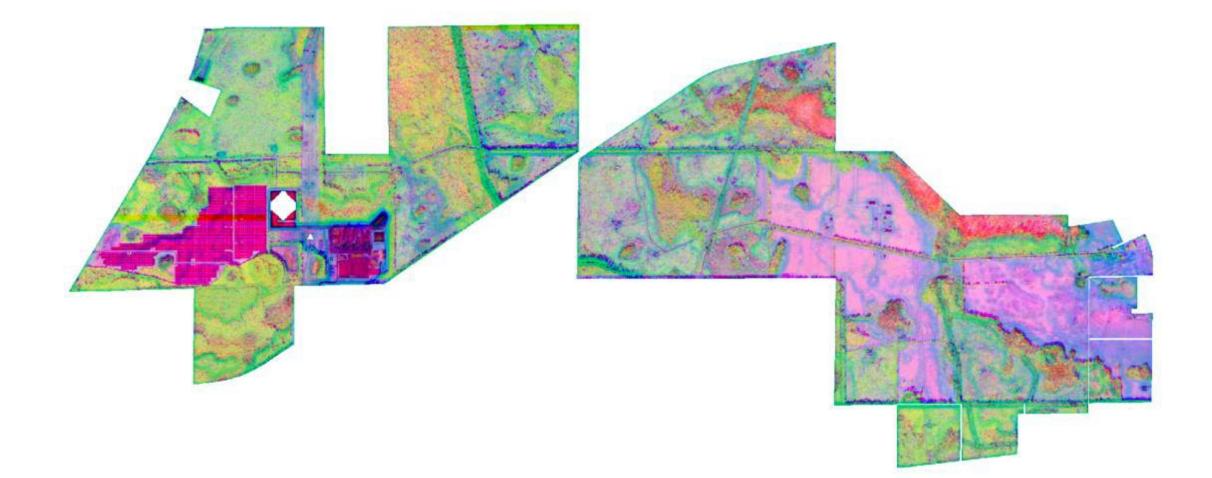


	grnd	bcon	chm	grad	plan	prof	twi	ndvi	soi
	0.848292	1.168940	4.480000	0.155842	0.280000	0.039993	3.049424	0.349663	96.0
1	1.097692	0.433987	0.490000	0.087569	0.026195	-0.073811	2.948446	0.189539	5.0
	-1.546986	1.550257	0.190000	0.162854	0.018937	0.058930	2.267665	0.194915	41.0
	1.151135	1.346371	11.780000	0.045512	-0.032000	0.088011	3.089783	0.183789	5.0
4	0.525409	0.794799	0.620000	0.108565	-0.077797	0.002205	2.220407	0.148438	5.0
	-1.654614	0.842667	1.070000	0.214368	-0.220559	0.299447	2.107459	0.170622	96.0
	-1.059320	0.816192	0.040000	0.123974	0.399678	-0.060131	3.647214	0.160622	41.0
	0.137206	2.055617	4.010000	0.013117	0.013995	-0.025983	4.333852	0.168724	3.0
	-1.591522	1.809911	1.050000	0.145349	-0.031793	-0.071787	2.383315	0.324561	41.0
	0.469739	0.000077	0.590000	0.050373	0.105280	-0.134711	6.356588	0.130081	5.0
10	0.472708	0.663679	23.139999	0.096262	-0.137603	0.142397	2.340686	0.279412	5.0
11	-1.060805	0.923987	1.160000	0.162201	0.119405	0.060596	4.151978	0.188679	41.0
12	-1.365874	0.706800	14.959999	0.086919	-0.058871	-0.038875	3.184917	0.097893	100.0
13	-1.616017	1.505951	0.010000	0.017339	-0.181535	0.118461	4.054793	0.151515	41.0
14	0.814891	1.617866	17.760000	0.074437	-0.020164	-0.060157	2.597808	0.235669	5.0
15	-1.735521	1.540530	3.070000	0.136662	-0.044501	-0.404495	2.627947	0.178325	41.0
16	0.614480	0.916568	65.909996	0.115491	0.066427	-0.133555	3.257171	0.432836	5.0
17	-0.211657	3.033164	0.570000	0.051313	-0.314218	0.185753	2.969817	0.126984	3.(
18	0.965570	1.091349	19.504999	0.357448	-0.077501	0.082503	1.721911	0.358025	5.0
19	-1.080104	1.074648	12.910000	0.056568	-0.010010	0.0299999	3.565446	0.254902	3.0

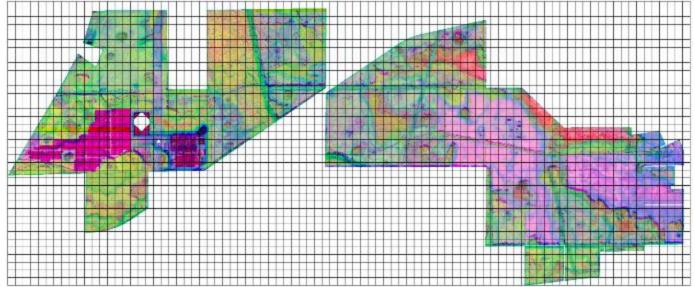
Machine learning models can provide nuanced evaluations of wetlands.

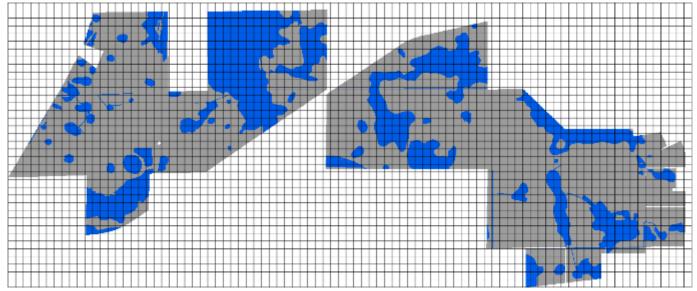


Complex environmental systems can require deep learning models.

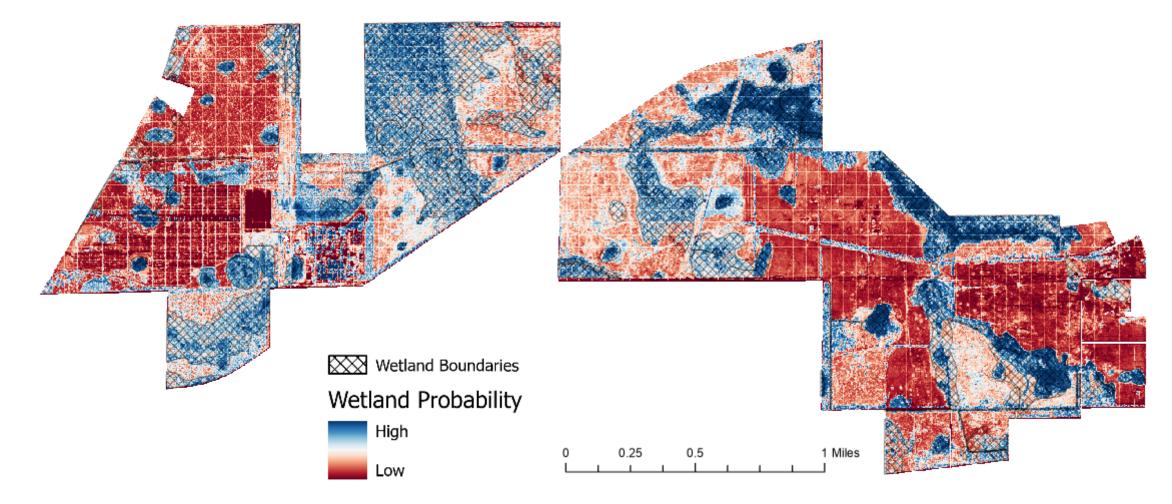


Deep Learning models often require data to be broken down.

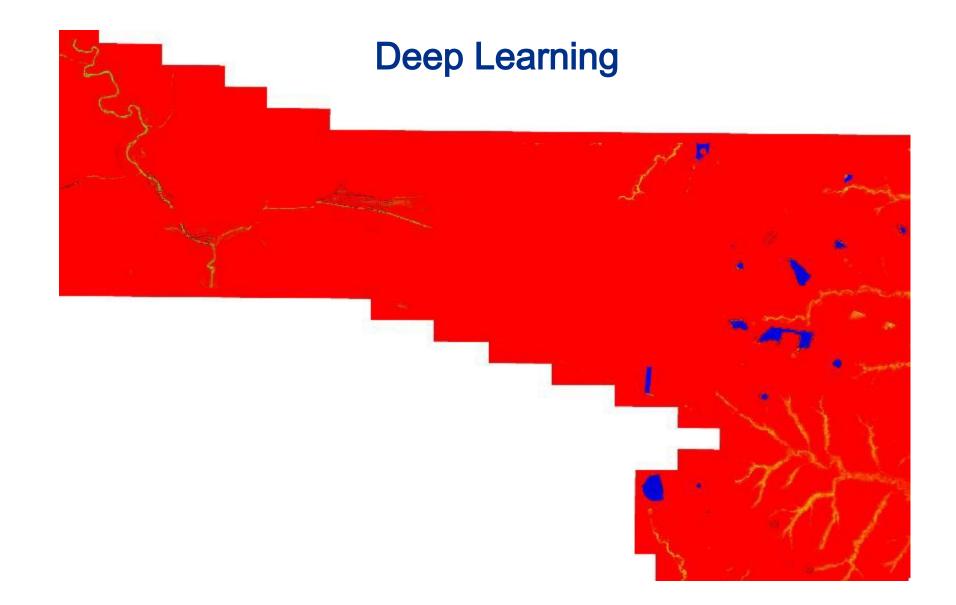




The deep learning model was better at evaluating "blind" sites.

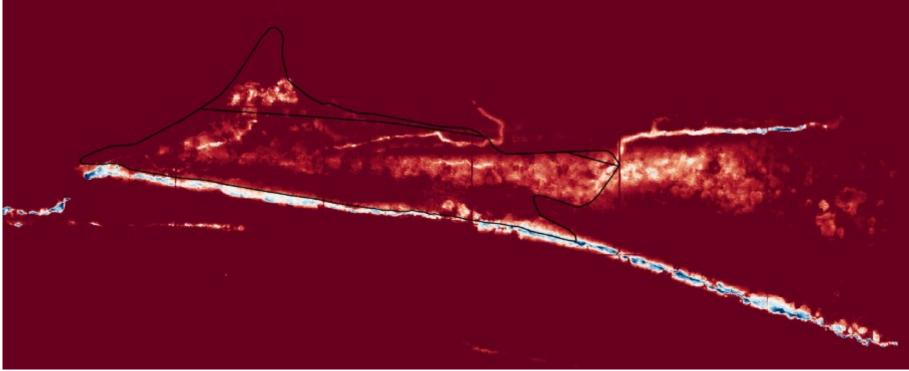


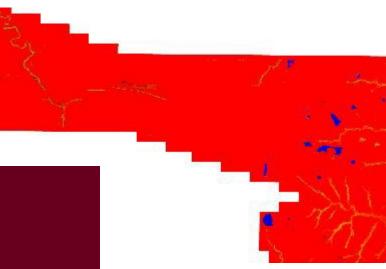
CDM Smith applied our deep learning model to a MoDOT corridor study.



CDM Smith applied our deep learning model to a MoDOT corridor study.

Wetland Probability



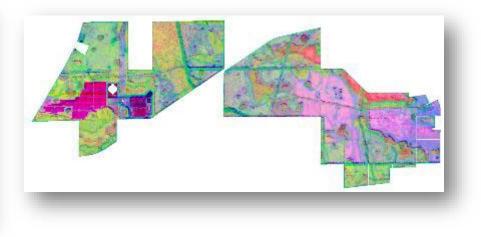


Looking forward: expanding capabilities for wetland delineation

- Drive strategic field
 - collection/verification design

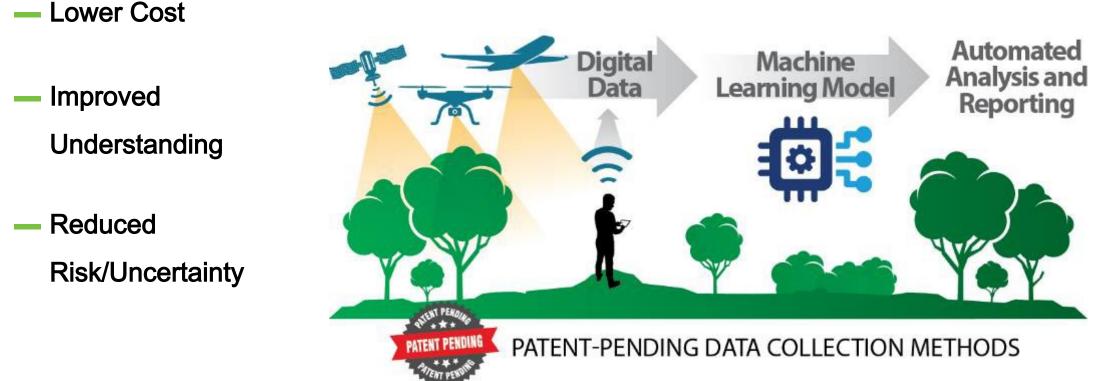
- Support permitting
- Resiliency planning
- Access changes over time

Machine learning and advanced remote sensing can help develop environmental solutions for the future.



Sky Wave provides multiple benefits to environmental projects.

∕vsky wave™



Contact us: skywave@cdmsmith.com