

UNDERSTANDING THE MACRO PROBLEM THAT IS MICROPLASTICS

Priya Iyengar & Tina Liu A&WMA Midwest Conference, Kansas City May 2, 2023

Agenda

Image Source: Quench Water

Agenda

Image Source: Quench Water

Microplastics 101

History, characteristics, sources, pathways

What's Next?

Data gaps & challenges, potential compliance issues

History of Plastics & Microplastics

described in scientific papers

What are Microplastics?

```
films
fibers
spheres
fragments
pellets
```

nanoplastics microplastics

Small pieces of plastic that are less than 5 mm

```
PET
LDPE
HDPE
PS
PVC
PP
```


Image Sources: Samuel Bollendorff/Fondation Tara Océan, Weithmann et. al 2018

Types of Microplastics

Small pieces of plastics that are purposely created by manufacturers to be smaller than 5 mm and enter the environment as such

Plastic fragments derived from the breakdown of larger plastic debris due to natural degradation

A Diverse Suite of Contaminants

Information Source: Rochman et al. 2019

Sources and Pathways

Microplastics in the Environment

The Next PFAS?

- 9,000+ compounds with unique characteristics (hydrophobic, hydrophilic)
- Soluble
- Novel approaches have been developed to assess risk and exposure
- Only a subset of compounds can be analyzed using current methods

- Diverse suite of contaminants
- Traditional fate and transport models inadequate
- Potential to bioaccumulate
- Persistent
- Ubiquitous nature requires specific procedures when sampling
- Risks to ecological and human health
- Implications for many industries

- Extreme diversity in polymer type, size, shape, etc.
- Insoluble
- Uncertainty on toxicity drivers (physical vs. chemical)
- Additives/other environmental chemicals may add another layer of complexity
- Lack of standardized analysis methods

PFAS

Both

Microplastics

Agenda

Image Source: Quench Water

Toxicity - Ecological

Uptake, trophic transfer, dermal

Physical & chemical drivers

Toxicity studies focused on aquatic

Toxicity – Human Health

Risk Assessment

- No federal framework for human health and ecological risk assessments
- Academics propose potential frameworks
- Limited dose-response models for humans
- ToMEx database

Toxicity Drivers & Data Needs

Shape

£03

Fiber, fragment, sphere

Size

Smaller particles = uptake, translocation

Larger particles = block nutrient uptake in gut

Polymer Type

PVC and PS = more hazardous

PE and PP = less hazardous

Microplastics Sampling & Analysis

Standardized Operating Procedures for Laboratory Analysis

- 2021: California introduced SOPs for FTIR and Raman spectroscopy for analysis of microplastics in drinking water
- Interlaboratory study with 22 laboratories from 6 countries participated

Laboratory Accreditation Program

2022: California
 Environmental Laboratory
 Accreditation Program
 (ELAP) adds world's first
 accreditation program for
 microplastics analysis

Sampling & Analysis Guidance Document

- 2022: California approved the world's first guidance on sampling and analytical protocols
- 2023: ITRC Microplastics Team published guidance document with a sampling and analysis chapter

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

Monitoring microplastics in drinking water: An interlaboratory study to inform effective methods for quantifying and characterizing microplastics

Hannah De Frond ^{a,*}, Leah Thornton Hampton ^b, Syd Kotar ^b, Kristine Gesulga ^b, Cindy Matuch ^b, Wenjian Lao ^b, Stephen B. Weisberg ^b, Charles S. Wong ^b, Chelsea M. Rochman ^{a,**}

Agenda

Image Source: Quench Water

Federal Regulatory Update

Microplastics

- 2015: Microbead-Free Waters Act
 - Prohibits addition of plastic microbeads in certain personal care products

Macroplastics

- 2020: Save Our Seas 2.0 Act
 - Aimed at reducing, removing, and preventing plastic waste in the environment
- Proposed 2021: Break Free from Plastic Pollution Act
 - Proposing amendments to the Solid Waste Disposal Act including reducing the production/use of certain single-use plastic products
 - o Proposing a microplastics pilot program
- Proposed 2021: Plastic Pellet Free Waters Act
 - Proposing that the EPA set limitations to pre-production pellet pollution

Image Sources: BBC, NPS

State Regulatory Update

- 2018: California Safe Drinking Water Act: Microplastics
 - ✓ Adopted first definition for microplastics in drinking water in 2020
 - ✓ Adopted standardized methods for testing microplastics in drinking water in 2021
 - ✓ Set up first accreditation program for microplastics analysis
 - ✓ Approved a policy handbook for testing microplastics in drinking water sources in 2022
 - ✓ Approved to test water supplies for microplastics over 4 years
 - ☐ Issue notification level to aid in results interpretation

- 2018: California Ocean Protection Council: Statewide Microplastics Strategy
 - Published Statewide Microplastics Strategy in 2022
- Proposed 2023: California Department of Toxic Substances Control (DTSC) Safer Consumer Products (SCP) proposes to add microplastics to Candidate Chemical List (CCL)

Other States

- Bans on single-use bags, utensils, and containers in 9 states (California, Connecticut, Delaware, Hawaii, Maine, New Jersey, New York, Oregon, and Vermont)
- Regulations on microbeads in personal care products and storage and handling of plastic resin pellets/nurdles

International Regulatory Update

2018

- Similar microbead bans in Canada, EU (Belgium, France, Ireland, Italy, Sweden), and UK
- 127 countries have adopted some form of legislation to regulate plastic bags

2019

- **Basel Convention is** modified to include plastic waste
- At the UN Environmental Assembly in Nairobi, 170 countries pledged to reduce use of plastics by 2030

2021

Canadian EPA adds plastic manufactured items added to the List of Toxic **Substances**

2022

- At the UN Environmental Assembly,175 countries agreed to develop a Global Plastics Treaty; have until 2024 to agree on elements of the treaty
- **European Commission** proposed law to ban intentionally added microplastics

Agenda

Image Source: Quench Water

What's Next?

Data gaps & challenges, potential compliance issues

Other Drivers

What's the tipping point?

Formosa Litigation

- Nurdles pre-production pellets
 - Made of different polymers and contain various additives
 - Released during production or in transit
 - Not classified as pollutants or hazardous materials
- Formosa Plastics Corporation (Lavaca Bay, Texas)
 - Formosa discharging millions of nurdles into nearby creek and bay
 - Lawsuit filed against Formosa in 2017 by private citizen; data collected by citizen science group
 - June 2019 judge ruled that discharge of nurdles violates CWA, Formosa must stop discharge and remediate
 - Formosa continues to pay fines for additional discharge

Understanding Data Gaps & Challenges

Fate & Transport

- Background/ambient concentrations
- Terrestrial environments and other media

- QA/QC
- Data reporting

Risk Assessment

- Expand toxicity testing to account for MP diversity
- Develop risk-based thresholds
- Risk assessment framework

Regulation & Compliance

- Comprehensive regulatory framework
- Where will we see compliance issues first?
- Who is responsible?

Potential Compliance Issues

Where might we start seeing compliance issues for microplastics?

Stormwater

Permitting
Best Management
Practices

Industrial & Municipal Wastewater

Pretreatment

Discharge requirements

Biosolids

Waste Management

Landfills

Leachate management

Materials Recovery Facilities

Food & Beverage

Drinking water

Bottled water

Food processing & packaging

Agriculture

Manufacturing

Industrial processes

Spill prevention

Product safety

Thank you!

Sign up for Geosyntec's Microplastics Newsletter

Priya lyengar (913) 224-1056 priya.iyengar@geosyntec.com Kansas City, Kansas

Tina Liu (636) 812-0816 tliu@geosyntec.com St. Louis, Missouri

