

A System Approach to Pumping Leachate May 2, 2023 10:15 am Presented by Mark Pearson

A&MWA 30th Annual Environmental Technical Conference

Meet Our Presenter

Mark Pearson, PE

- Mark is a Project Director based in the Overland Park, Kansas Office of SCS Engineers. He has been with SCS approaching 4 years.
- Mark has over four decades of experience in environmental engineering, with an emphasis on wastewater design and potable water treatment plants, wells, pumping stations, sewers and waterlines.
- Expertise includes project management through facility planning, design, and construction phases. He has worked on a wide range of projects throughout the United States and around the world.
- Mark is a Professional Engineer licensed in Missouri, Kansas, and Nebraska.

Pumps are part of a system which must be defined before a pump is selected.

It's a System – Develop System Thinking

Tell a Story - Documentation

- Every Story Has...
 - A Beginning
 - A Middle
 - An End

In System Curve Development There Is:

- Suction Piping
- One Pump Discharge Piping
- Force Main

Submersible Pump Station

Suction Lift Pump Arrangement

Dry Well Pump Isolated from Wet Well

Multiple Pumps

PIPE

2.	INPUT LENGTH AND SIZE OF SUCTION AND													
	DISCHA WISH TO	RGE PIP D	ING FOR	R THE S	YSTEM Y	OU								
	EXAMIN FOR UN	EXAMINE. BE CAREFUL TO SEPARATE DATA FOR UNIT SUCTION,												
	UNIT DI HEADEF	UNIT DISCHARGE AND SYSTEM HEADER PIPING:												
	Note: Three sizes of pipe are available for each section of piping.													
		Nomina												
			DR	ID		L								
		Dia, in	type	in.	С	ft								
						_								
SUCTION	HDPE	4	DR 11	3.633	140	0								
		6	DR 11	5.348	140	0								
		8	DR 11	6.963	140	8								
DISCHARG)E -	3	DR 11	2.825	140	0								
EACH PUN	IP	4	DR 11	3.633	140	0								
		6	DR 11	5.348	140	5								
		6	DR 11	5.348	140	946								
		4	DR 11	3.633	140	0								
		8	DR 11	6.963	140	0								

Minor Losses: K-Values

- The K-value, Resistance Coefficient, Velocity Head, Excess Head or Crane method allows the user to characterize the pressure loss through fittings in a pipe. The K-value represents the multiple of velocity heads that will be lost by fluid passing through the fitting.
- Velocity Head, ft
- K*V²/2g
 - K = value of velocity head lost through a fitting or value
 - V = velocity ft/sec
 - G = acceleration of gravity = 32.2 fps

K-Values

			GATE	GLOBE	Sum/product
Diam.	ENT.	EXIT	VALVE	VALVE	
in.	0.5	1	0.2	10	
SUCT					
3.633	0	0	0	0	0
5.348	0	0	0	0	0
6.963	1	0	0	0	3.3
DISC					
2.825	0	0	0	0	0
3.633	0	0	0	0	0
5.348	0	0	1	0	3
HEADER					
5.348	0	1	0	0	3.3
3.633	0	0	0	0	0
6.963	0	0	0	0	0

Flow

6.	ENTER THE FLOW INTERVALS TO BE USED ON THE X AXIS											
	FOR THE	SYSTEM	CURVE.									
		GPM										
		-										
	1	0										
	2	95										
	3	195										
	4	295		Enter flow	v for one	pump rang	ge.					
	5	395		Enter flow	v for idea	eal operating point						
	6	495										
	7	595										
		100		Enter inte	erval betw	veen x axi	s points					

Velocity Check (2 fps -10 fps)

	Trial & Error Velocity Check										
	Input										
A>	2.5	fps									
	В	Diam.		If the ve pipe is	elocity ir B	the pip	e is A, tl	he flow i	n the		
	gpm	in.									
4	81	3.633	SUCT	ION							
6	176	5.348									
8	297	6.963									
			DISCH	IARGE -	EACH						
3	49	2.825	PUMP								
4	81	3.633									
6	176	5.348									
6	176	5.348	DISCHAF	RGE - COMN	NON TO ALL	PUMPS					
4	81	3.633									
8	297	6.963									
				A minin a cycle	to to	.0 fps sh	ould be	provideo	d at leas	t once	
				keep solids moving in the pipelines							

Sketch Your Head

Head

	LOW	HIGH	STAT. SUCT. HEAD =			
Discharge	3071	3073	3064	low level in	the wet w	vell
Wet Well	<u>3064</u>	3069	<u>3063</u>	centerline	of pump	
	7	4	1			
			NPSH			

Static Head =	High	7'
Static Head =	Low	4'
		1'
Temperature		70 degrees F
		ft above
Elevation of Pump		3063 sea level

High and Low Head

- High Wet Well/Low Tank Level
- Low Wet Well/High Tank Level

Types of Head

- Elevation "I yam what I yam"
 - Centerline of Pump to Water Surface in Wet Well Lift Required
- Vapor Pressure (-) in Pipe
 - Imagine Liquid wanting to evaporate in the pipe fighting back against suction
- Atmospheric Pressure (+)
 - Pushes down liquid into the pipe for an assist

• Net Positive Suction Head (NPSH)a

Factors of Net Positive Suction Head

Temp	Vapor					
.e	Drees	VD	Elev	Atm.	A tree D	
;r	Press		Elev.	Press.	ALMP	
	psia	0.36	feet	psi	13.2	
32	0.09		0	14.7		
40	0.12		500	14.43		
50	0.18		1000	14.2	Elev	
60	0.26		2000	13.7	3063	
70	0.36	Temp	3000	13.2		
80	0.51	70	4000	12.7		
90	0.7		5000	12.1		
100	0.95		6000	11.8		
110	1.27		7000	11.4		
120	1.69		8000	10.7		
130	2.22		9000	10.5		
140	2.89		10000	10.1		
150	3.72					
160	4.74					
170	5.99					
180	7.51					
190	9.34					
200	11.52					
212	14.7					

Done with Inputs -Time for Outputs

SINGI PUMP	LE								HAZEN FORMU	I - WILL JLA	IAMS								
ITEM										4 0 4 0 *				. = 4					
		Leacha	ate Pun	1p No. 1	te Seu				v=	1.318*	C^(D/4)'	°0.63°	((HI)I/L)^(0.54	v Pres	0.36	psi		
KUN :		Manho	le No. 9))	to Sew	/er		or	(HI)I=	4.72*(0	Q/C)^1.8	85*D^-	4.87*L		Atm Pres	13.2	2psi	+	
		Waywa	ard Lan	dfill Pha	ase IV														
PROJ	ECI :	2022 SVSTE		6 Worns	ord									Svotom			Wate	r Svot	- m
		Landfil	II 2022	o wayn	aru					^			Losses	ystem			Loss	es	em
										1			TOTAL				тота	L	
													PIPE				PIPE	E	
	FLOW	FLOW	Diam.		L	Area	V	Ηv	K's	(HI)I	(HI)k		HI	THL	TDH	FLOW	н	THL	TDH
	gpm	cfs	in.	С	ft	sf	fps			ft	ft		ft	ft	ft	gpm	ft	ft	ft
	SUC	CTION																	
	395	5 0.880	0	140	0	0.00	0.00	0.00	0	0.00	0.00		0.00				0.00		
	395	5 0.880	0	140	0	0.00	0.00	0.00	0	0.00	0.00		0.00		NPSH(a)		0.00		NPSH(a)
																			30.0475
	395	50.880	6.963	140	8	0.26	3.33	0.17	3.3	0.05	0.57		0.63 	0.63 	30.03		0.61	0.61	4
	DIS	CHAR	GE - E/	АСН Р	UMP														
	395	5 0.880	0	140	0	0.00	0.00	0.00	0	0.00	0.00		0.00				0.00		
	395	0.880	0	140	0	0.00	0.00	0.00	0	0.00	0.00		0.00				0.00		
	395	0.880	5.348	140	5	0.16	5.64	0.49	3	0.10	1.48		1.62	1.62			1.59	1.59	
																395			
	DIS	CHAR	GE - C	оммо	N TO		UMPS	5											
																	20.9		
	395	0.880	5.348	140	946	0.16	5.64	0.49	3.3	19.33	1.63		27.55				6		
	395	0.880	0	140	0	0.00	0.00	0.00	0	0.00	0.00		0.00				0.00		
	395	0.880	0	140	0	0.00	0.00	0.00	0	0.00	0.00		0.00	27.55			0.00	20.96	
															36.79	395			30.16
:															=====				

System Curve Data

GPM	FT				High	Low			SLUDGE SYSTEM CUR	VES WATER SYST	WATER SYSTEM CURVES	
<u>FLOW</u>	<u>TDH</u>	_			<u>HPSHa</u>	<u>NPSH(a)</u>		Low	<u>High</u>	Low	<u>High</u>	
0	7	ONE	4		35.7	30.7	ONE	7.0	4.0	7.0	4.0	
95	9.2		6.2		35.6	30.6		9.2	6.2	8.6	5.6	
195	15.1	PUMP	12.1	٨	35.5	30.5	PUMP	15.1	12.1	13.2	10.2	
295	24.4	SYSTEM	21.4		35.3	30.3	SYSTEM	24.4	21.4	20.4	17.4	
395	36.8	<>	33.8	STATIC	35.0	30.0	<>	36.8	33.8	30.2	27.2	
495	52.2	STATIC	49.2	HEAD	34.7	29.7	STATIC	52.2	49.2	42.4	39.4	
595	70.4	HEAD 1	67.4	2	34.2	29.2	HEAD 1	70.4	67.4	56.9	53.9	

Summarize System Curves

- High Head Water Curve
- Low Head Water Curve
- High Head Sludge Curve
- Low Head Sludge Curve

Sludge vs Water

Pipe Friction Head Loss in Transportation of High-Concentration Sludge for Centralized Solids Treatment

Hisashi Murakami, Hideaki Katayama, Hidetsugu Matsuura

August 2016

Sludge Headloss

Solids concentration ranges between 2 and 5%. Turbulent flow

solids concentration, C,

$$H_f(\mathrm{m}) = 9.06 \left(\frac{1}{C_H}\right)^{1.93 \times (1 - C/100)} \frac{L}{D^{1.18}} V^{1.8}$$

$$L_{V^{1.82}}$$

 Δh = pipe friction head loss (m), D = pipe diameter (m), L = pipe length (m), V = average velocity (m/s), and g = gravitational acceleration (m/s²).

 C_H coefficient of the Hazen-Williams equation

System Curves

Pump Curve from Manufacturer

Pump Curves

Pump Data

Leachate Pump No. 1 PUMP:														
From Lea	ichate Pon	d to												
Sewer Ma	anhole No.	9	SPEED:	1750										
Wayward Landfill Phase IV 2022														
DATE:	05/17	2022		NUMBER	OF PUMF	PS =	2							
PUMP AN	ND SYSTEI	M CURVE	S											
=	=	=	=	=	=									
GPM	HEAD		EFF	BHP			NPSH(r)							
				(calculat						Flow				
FLOW	FT	1750	%	ed)			ft			Range				
0	108		10	5.2			3	Base Pump)	0				
200	93		45	10.4			4			95				
400	83		50	16.8			8			195				
500	77		52	18.7			10			295				
600	71		52.5	20.5			14			395				
725	62		51	22.3			21			495				
		1150								595				
0	48		10	2.3			0	Comparias	on Pump					
200	38		42	4.6			8	Shows up o	only on One	e Pump cur	ve to comp	are to the l	Base Pump	
300	35		48	5.5			10.6							
400	32		52.5	6.2			12							
500	27		52	6.6			14.5							
600	21		51	6.2			16							

One Pump Water Curve

Multiple Pumps

	FLOW	FLOW	Diam.		L	Area	V
	gpm	cfs	in.	С	ft	sf	fps
395	GPM						
	SUC	TION					
	395	0.880	3.633	140	0	0.07	0.00
	395	0.880	5.348	140	0	0.16	0.00
	395	0.880	6.963	140	8	0.26	3.33
	DISC	HARGE · PUMP	- EACH				
	395	0.880	2.825	140	0	0.04	0.00
	395	0.880	3.633	140	0	0.07	0.00
	395	0.880	5.348	140	5	0.16	5.64
	DISC	HARGE	- COMM UMPS	ΟΝ ΤΟ			
	790	1.760	5.348	140	946	0.16	11.28
	790	1.760	3.633	140	0	0.07	0.00
	790	1.760	6.963	140	0	0.26	0.00

In System Curve Development There Is:

- Suction Piping
- One Pump Discharge Piping
- Force Main

Multiple Pump Curve

Consider All Possible Operating Conditions

- One Pump Operating Alone How Often
- Multiple Pumps Operating Together All the time?
- Larger Pump and Smaller Pump?

Variable Speed Pumping

Summary

- Define the System Tell the Story
- Reliable Outputs
 - By the Numbers
 - Output
 - Mult
 - By the Figures
 - One Pump
 - 1PumpH2O
 - MultPmp
 - VFD

Wet Well Sizing

- Cycle Time
 - Fill Time
 - Pump Down Time
 - Output less Input
- 15 Minutes between Starts
- Motor Windings Heat Up (SPIKE) to Get the Motor Turning
 - Running the motor cools the windings
 - Pumped liquid in submersible pumps cools windings

Questions?