The Analysis for PFAS: A Review of Methodologies, Pros/Cons and Liabilities

Midwest Section A&WMA Environmental Technical Conference May 2, 2023

Charles Neslund Scientific Officer and PFAS Practice Leader

Environment Testing

Copyright © 2023 Eurofins

The General Classes of Per- and Polyfluoroalkyl Substances (PFAS)

🔅 eurofins

Environment Testing

51PP

What Are The Data Being Used For?

Remedial

Investigation

Site characterization, screening, estimates, modeling all appropriate

Preliminary Investigation

Both screening and regulatory data could be appropriate, might be mitigating risk associated with unknowns

Compliance Or Litigation

> efficacy of the process, regulatory and technology driven

Defensible data that can withstand legal scrutiny

Measure the

eurofins Environment Testing

Treatment

Copyright © 2022 Eurofins

EPA DRINKING WATER METHODS

EPA 537.1 EPA 533

Copyright © 2023 Eurofins

PFAS Maximum Contaminant Levels (MCLs)

Copyright © 2023 Eurofins

RINKING WATE

SDWA: UCMR 5

Unregulated Contaminant Monitoring Rule

🔅 eurofins

Copyright © 2023 Eurofins

WATE

RINKING

https://www.epa.gov/newsreleases/epa-announces-nationwide-monitoring-effort-better-understand-extent-pfas-drinking

Environment Testing

SDWA: UCMR 5

PFAS Analyte List

	537.1 Analytes		533 Analytes
PFBS	PFUnA	DONA	NFDHA
			PFBA
PFHxA	PFDoA	HFPO-DA	PFEESA
PFHxS	PFTA		PFHpS
PFHpA	PFTrDA		PFMPA
			PFMBA
PFOA	NMeFOSAA		PFPeA
PFOS	NEtFOSAA		PFPeS
DENA			4:2 FTS
	110-1130003		6:2 FTS
PFDA	9CI-PF3ONS		8:2 FTS

https://www.epa.gov/dwucmr/fifth-unregulated-contaminant-monitoring-rule

Drinking Water

533	537.1
Prinking Water	Drinking Water
ranched/Linear Isomers -YES	Branched/Linear Isomers -YES
4 of the same and 15 unique compounds	14 of the same and 4 unique compounds
PE WAX	SPE SDVB
Iold Time: 28/28 days	Hold Time: 14/28 days
CMSMS with confirmation ion	LCMSMS - no confirmation ion
sotope Dilution	Internal standard
ecovery Correction - YES	Recovery Correction – NO
Ls: Not defined	RLs: 2ppt - 40ppt

Copyright © 2023 Eurofins

Labeled Analogues

Ξ

The Parr Family = <u>Native PFOS</u>

The Incredible Family = <u>Labeled PFOS</u>

+ 🖸

Copyright © 2023 Eurofins

sotope

Dilution

Benefits of Isotope Dilution

eurofins Environment Testing

What affects the native analyte will equally affect the isotope

Calibratio

Most accurate and precise method

Target analytes are quantitated against structurally similar materials, the isotopes themselves Expands ability to process a broader range of matrices Reduces the potential for false positives

<u>Identification</u>

punod

Com

Reduces the potential for error; corrects for retention time shifts

100 I 1000

NON-POTABLE WATER & SOLIDS

User-Defined Isotope Dilution Method EPA Draft 1633 Method

Comprehensive PFAS Testing

🔅 eurofins

Environment Testing

ST. Party

-

User-Defined Methods: PUT TO THE TEST!

- Biphasic
 Biosolids
 Tissues
 Dispersions
 Activated Ca
 Cosmetics
 - Activated Carbon Cosmetics Concrete
- NELAC
 DoD ELAP
 Client/Program
 Specific Audits
 Semiannual PT
 NMI International
 Round Robin
 - DOW Study

- >85% of all PFASdata includes avalidationpackage
- >300,000 sample data validated

2 M Perfluorooctanoic acid (PFOA)

Perfluorononanoic acid (PFNA)

Perfluorodecanoic acid (PFDA)

Perfluoroundecanoic acid (PFUnA)

Perfluorododecanoic acid (PFDoA)

Perfluorotridecanoic acid (PFTriA)

Perfluorotetradecanoic acid (PFTeA)

Perfluorobutanesulfonic acid (PFBS)

Perfluoropentanesulfonic acid (PFPeS)

Perfluorohexanesulfonic acid (PFHxS)

Perfluoroheptanesulfonic Acid (PFHpS)

Perfluorooctanesulfonic acid (PFOS)

Perfluorononanesulfonic acid (PFNS)

Perfluorodecanesulfonic acid (PFDS)

Perfluorooctanesulfonamide (FOSA)

Perfluorododecanesulfonic acid (PFDoS)

Compounds Included in I	EPA Draft 1633 (RLs ~2-5ng/ L)	Target Compounds Not Part of EPA Draft 1633 (RLs ~2-5ng/L)		
Perfluorobutanoic acid (PFBA)	NEtFOSA	10:2 FTS	EVE Acid	
Perfluoropentanoic acid (PFPeA)	NMeFOSA	6:2 FTCA	PFO5DA	
Perfluorohexanoic acid (PFHxA)	NMeFOSAA	8:2 FTCA	PMPA	
Perfluoroheptanoic acid (PFHpA)	NEtFOSAA	10:2 FTCA	PEPA	

NMeFOSE

NEtFOSE

4:2 FTS

6:2 FTS

8:2 FTS

DONA

3:3 FTCA

5:3 FTCA

7:3 FTCA

NFDHA

PFMBA

PFMPA

PFEESA

9C1-PF3ONS

11Cl-PF3OUdS

HFPO-DA (GenX)

	EVE Acid
	PFO5DA
	PMPA
	PEPA
	MTP
	PS Acid
	Hydro-PS Acid
	R-PSDA
	Hydrolyzed PSDA
	R-PSDCA
	6:2 diPAP
	8:2 diPAP
	6:2/8:2 diPAP
	10:2 diPAP
	10:2 FTOH (RL=1ug/L)
	8:2 FTOH (RL=1ug/L)
	7:2 FTOH (RL=1ug/L)
	6:2 FTOH (RL=1ug/L)
noic acid (PFODA)	4:2 FTOH (RL=1ug/L)

Perfluoro-n-hexadecanoic acid (PFHxDA)

6:2 FTUCA

8:2 FTUCA

10:2 FTUCA

PFECHS

PFPrS

PFPrA

PFMOAA

PFECAG

PFO4DA

PFO3OA

PFO2HxA

R-EVE

NVHOS

Hydro-EVE Acid

Perfluoro-n-octadecan

EPA Draft Method In Progress

EPA Draft 1633

- Targeted Analysis of 40 PFAS
- Non-Potable Water, Soil & Tissue
- LCMSMS, WAX SPE, Isotope Dilution
- Multi-Lab Validation Underway

Z

Copyright © 2022 Eurofing

EPA <u>Draft</u> 1633 for Non-Potable Water & Solids

SIMILARITIES

- Applicable to a variety of solids and aqueous matrices
- Solid Phase Extraction using WAX
- Isotope Dilution Quantitation using all available isotopes
- Ion Transitions, monitoring ratios
- *Using non-Extracted Internal Standards (NEIS) for quantitation of extracted internal standards (EIS)
- **Use of carbon cleanup

*QSM 5.3 dropped it, but they are bringing it back with B-24

**User-defined methods use stacked carbon vs. loose carbon

Compared to: User-Defined Methods and DoD QSM Table B-15

DIFFERENCES

- Soil/Tissue Prep: concentration step
- S/N Ratio
- Waters Oasis WAX SPE Cartridge with loose carbon cleanup
- TDCA Check: 60 sec window specification
- Includes frozen storage option
- Complex dilution scheme with 10X dilution limitation
- Mass transitions vary for some

EMERGING TECHNOLOGIES

PFAS in Air/Stack Emissions TOP Assay Total Organic Fluorine (TOF) Non-Target Analysis (NTA)

eurofins | Environment Testing

Source Air

EPA OTM 45

Application: Semivolatile and particulate-bound PFAS from Source Air Emissions

Sample Collection: Based off of EPA Method 0010

Sample Preparation: Based off of 3542

Analysis: LCMSMS with Isotope Dilution based off of EPA Method 533

Ambient Air

Modified TO-13A / LCMSMS

Application: Semivolatile and particle-bound PFAS in Ambient Air

Sample Collection: PUF/XAD Cartridge based off of EPA Method TO-13A

Sample Preparation: Methanol Extraction based off of Userdefined method

Analysis: User-defined method for PFAS by LCMSMS with Isotope Dilution Vapor

Modified TO-17 / GCMSMS

Application: Volatile PFAS in Indoor Air and Soil Vapor

Sample Collection: Thermal Desorption Tube based off of EPA Method TO-17

Sample Preparation: Thermal Desorption based off of EPA Method TO-17

Analysis: User-defined method for PFAS by GCMSMS

https://www.epa.gov/sites/production/files/2021-01/documents/otm 45 semivolatile pfas 1-13-21.pdf

Results of oxidation of 6:2 Fluorotelomer sulfonate at 250 ng/l

PFCA	ELLE	Houtz
PFBA	21.6	22
PFPeA	43.6	27
PFHxA	16.1	22
PFHpA	2.4	2
PFOA	0.3	0
PFNA	0.0	0
PFDA	0.0	0
PFUnDA	0.0	0

Molar Yield

Copyright © 2022 Eurofins

TOP Assay – Other Precursors

10:2 FTS

Copyright © 2022 Eurofins

No. of Concession, Name

The sele

TOP Assay Results

Compound	Pre-Ox	Post-Ox	Difference
PFBA	ND	98 ng/l	98 ng/l
PFPeA	ND	87 ng/l	87 ng/l
PFHxA	5 ng/l	61 ng/l	56 ng/l
6:2 FTS	100 ng/l	ND	- 100 ng/l
PFHpA	ll ng/l	32 ng/l	21 ng/l
PFOA	7 ng/l	26 ng/l	19 ng/l
PFOS	56 ng/l	52 ng/l	- 4 ng/l
8:2 FTS	26 ng/l	ND	- 26 ng/l
PFNA	ND	5 ng/l	5 ng/l

Copyright © 2022 Eurofins

St. Party

The selles

Total Organic Fluorine Analysis

Marriage of TOX and IC

Sample (or treated sample) is combusted in a furnace at $900^{\circ}C - 1100^{\circ}C$

Effluent collected in buffer and injected into ion chromatograph (IC)

Quantify fluorine (as fluoride) content

Compare ratio of total (or extractable) fluorine to total PFAS

Oxidative pyrohydrolytic combustion

Handling of the sample prior to fluoride determination determines result evaluated

EOF – Extractable Organic Fluorine

AOF – Absorbable Organic Fluorine

Total Organic Fluorine Analysis in Water

Adsorbable Org. F (AOF)

- Sample Prep
 - 100mls sample pass thru activated charcoal bed(s)
 - Final wash with nitrate solution to remove inorganic fluoride
- Combustion of Charcoal into CIC to measure F⁻ by IC

Extractable Org. F (EOF)

- Sample Prep
 - 100mls sample pass thru weak anion exchange (WAX) SPE
 - Elute PFAS with methanol
 - Concentrate
 methanol to final
 1mL
- Combustion of extracted sample into CIC to measure F⁻ by IC

Total Org. F (TOF)

- Sample Prep (water samples)
 - No Sample Prep
- Direct injection of aqueous sample into CIC system to measure both Inorganic F⁻ and Organic F⁻ simultaneously

Courtesy of Dr. Jayesh Ghandi - Metrohm

EPA Draft Method In Progress

EPA Draft 1621

- Adsorbable Organic Fluorine (AOF)
- Applicable to waters
- Proxy analysis for 'Total PFAS'
- Single lab validation complete; multi-lab validation in process

Copyright © 2022 Euroline

Non-Target Analysis

WHERE WE'RE GOING, WE DON'T NEED ROADS.

LC-QToF-MS

Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry

Sample X TIC (blue trace) and extraction blank (green trace).

MB injection volume = 10 ul , sample X injection volume 2 uL . Targeted analysis indicated potential matrix

Sample X spectra at 4.56 min. Top pane: XIC 455.959 Da, Middle pane: TOF MS (50-470 Da), Bottom pane: TOF MSMS (50 500 Da) 455.9570 Da is referenced in literature with chemical formula C8H3F13NO4S, see inset structure.

Table 2. Sample X Negative ESI Results

-	-			
Precursor Mass	Retention	Area	Calculated amount (ng/L)	Calculated Amount (ng/L)
	Time		using 13C8 PFOA	using 13C8 PFOS
382.9459	4.29	23695	93.96	83.17
643.8879	4.56	18847	74.74	66.15
642.9146	4.56	30786	122.09	108.05
640.9162	4.56	31474	124.82	110.47
455.9591	4.56	45328	179.76	159.10
519.9572	4.72	25027	99.25	87.84
480.9410	4.82	11983	47.52	42.06
580.9343	5.32	47486	188.32	166.67
1056.9204	5.32	20128	79.82	70.65
501.9306	5.32	25046	99.33	87.91
514.9018	5.44	66940	265.46	234.95
514.9261	5.44	12900	51.16	45.28
623.0533	6.81	33976	134.74	119.25

States and States

Targeted PFAS

All Matrices – Up to 80 Compounds

Strengths: Selectivity, Sensitivity at ~1-5pptCan be used for risk assessmentWeaknesses: Limited list of compounds

Non-Target Analysis

All Matrices – Unknowns

Strengths: Ability to identify 'unknowns' with specificityAbility to conduct novel compound identificationWeaknesses: Limited to current librariesLimited quantitation

• TOP Assay All Matrices – Oxidizable Precursors

Strengths: Sensitivity at ~1-5ppt

Specific to 'unknowns' with potential to convert to risk drivers

Weaknesses: Not specific

Does not complete a mass balance

Total Organic Fluorine

All Matrices – Organic Fluorine

Strengths: Closest to a mass balance Weaknesses: Sensitivity at ~1ppb No selectivity

QUESTIONS?

Charles.Neslund@ET.EurofinsUS.com 717-799-0439

