

Air Modeling: Tips & Tricks

Air Technical Session (May 2, 2023)

> Presented by: Stephanie Taylor

30th Annual Environmental Technical Conference

Presentation Overview

- Background
- Why We Model
- Tips & Tricks
- Real Project Examples

What is Air Dispersion Modeling?

- Simulation of how air pollution/odor released from a source impacts air quality
- Estimates peak and average pollutant concentrations
- Results are compared to regulatory thresholds

Model Inputs

Facility Information

- Property Boundary
- Emission Sources
 - Stack/Release Parameters
 - Emission Rates
- On-Site Buildings

Model results are only as good as the data that goes into it

Environmental Information

- Meteorological Data
- Terrain Data
- Receptor Grid
- Interactive/Off-Site Sources

Types of Analysis

National Ambient Air Quality Standards (NAAQS)

Prevention of Significant Deterioration (PSD) Increments

Air Toxics/Health Risk Assessment (HRA)

State Air Quality Standards

Odor Assessment

We model to show compliance with air quality rules and regulations

When do We Need to Model?

- New construction
- Modification of an existing source
- Compliance Agreement
- Existing Source pulled in from someone else's modeling results
 - Your facility shows a significant impact as an interactive source in another facility's model
- Feasibility Study/Odor Evaluation

Tips & Tricks

What do you do when the model doesn't pass?

What Impacts the Model?

Pollutants/Emission Rates

Distance

Meteorology

Source Characteristics

How do we modify these to get a passing model?

Pollutants/Emission Rates

- Some pollutants are more difficult than others
 - Lower standards/thresholds
 - Different chemistry
 - Smaller averaging times

- Is there a way to reduce your emission rate?
 - Add a control device
 - Take a limit on how much material is used/processed

Distance

- How close is the emission source to the property boundary/ambient air?
- New Sources:
 - Perform modeling to determine the best placement for new equipment
- Existing Sources:
 - More difficult to adjust permanent structures
 - Is it possible to move the location?

The closer to the property boundary, the more difficult passing the model can be

Meteorology

- Calm/Stable Winds = Less Dispersion
 - Typically occur during late night and early morning
- When does the source need to operate?
 - Take specific hour limits to eliminate or reduce operation during calm/stable winds
- Seasonal Limitations
 - Is it an operation that operates more during a particular time of year?
 - Take limits during the off-season

Source Characteristics

- Stack Height:
 - The taller the stack, the better dispersion
- Stack Diameter:
 - Smaller stack diameter results in faster flow
- Flow Rate:
 - •Get a bigger fan/blower
 - Faster flow = better dispersion
- Orientation:
 - Vertical, non-obstructed stack is best

Make sure to double check the other stack parameters in AERMOD if you change one!

Real Project Examples

Fumigation Operation (New Construction)

Grain Elevator (Existing Facility)

Animal Feed Mill (Modification)

Landfill (Existing Facility)

Large Property but No Physical Barrier to Keep Public Out

Large Particulate Matter Sources Near Ambient Air Boundary Installed Barbwire Fence to Create Physical Boundary

Questions?

Thank you!

Stephanie Taylor SCS Engineers staylor@scsengineers.com

