Chlorinated Solvent Treatment via In-Situ Oxidant Blending

Anthony Moore
Environmental Works, Inc.
AWMA Environmental Technical Conference 2017
Chlorinated Solvent Treatment via In-Situ Oxidant Blending

- Site history
- Remediation approach and planning
- Remediation implementation
- Remediation monitoring
- Lessons learned
Site History

- Facility manufactured printed circuit boards
- Primary chemical used – TCE
- Remedy – pump and treat system
Site History – SSI

- Collect additional data to evaluate remedial alternatives
- Pumping suspension
- Additional groundwater monitoring – VOCs and geochemistry
- In-situ ERD treatability study
- 14 MIP locations, 55 soil borings
Site History – SSI

- SSI results
- Groundwater
 - Some COC rebound
 - No lateral or vertical expansion of dissolved-phase plume
 - ISB and ISCO viability
- Soil
 - Soil impact / source material is present in multiple areas
Site History – SSI

Notes:
- TCE = trichloroethylene
- Data: smoothed, closest point algorithm
- Contours shown: 3, 7, 20, & 200 mg/kg in white, pink, red, & brown, resp.
Site History – SSI
Site History – SSI

Note:
North-trending profiles of Area 1 FGC TCE model (source depicted in Figure 44)
TCE units: mg/kg
Stripmap swath width 12 ft.
Profile elevation in ft amsl; VE = 1.
Each profile compiled using those borings included within the corresponding stripmap located above each profile. Borings in stripmap are projected onto the corresponding profile.
Remediation Approach

• Treat areas separately
• Evaluate remedial alternatives – technical merit, implementation, and costs
 o Excavation and offsite disposal/treatment
 o Excavation and onsite treatment
 o In situ bioremediation
 o In situ chemical reduction
 o In situ chemical oxidation

• Selected approach – ISCO via in situ soil blending
Remediation Approach

• Phased approach

• Phase I
 o Further define treatment area
 o Monitoring well installation
 o Treatability study

• Phase II
 o Baseline sampling event
 o Blending preparations and implementation
 o Restoration activities

• Phase III
 o Post-treatment monitoring
Remediation Planning
Remediation Planning

• Treatability Study
 o Permanganate and persulfate testing
 o Soil and groundwater from the Site – COCs removal, natural oxidant demand, metals migration potential, metals attenuation

• Treatability Study Results
 o Natural oxidant demand
 o COCs removal
 o Metals migration and attenuation
 o KMnO₄ selected as oxidant
Remediation Preparation

• Baseline sampling event
• Blending preparations
 o Administrative activities
 o Site access and preparation
 o Overburden soil removal
 o Subsurface concrete and debris
Remediation Preparation
Remediation Implementation
Remediation Implementation
Remediation Monitoring

- Restoration activities
- Post-treatment monitoring – VOCs and geochemistry
Remediation Monitoring

SSC-11

TCE (ug/L)

Baseline PTME-1 PTME-2 PTME-3 PTME-4 PTME-5 PTME-6

1,870 0 0 0 33.6 2,630 0
Remediation Monitoring

![Graph showing TCE (µg/L) over time with a peak at Soil Blending (Dec 12)]
Lessons Learned

- Consider data density
- MIP limitations
- Treatability study can be valuable
- Don’t under estimate NOD
- Blending mechanism with subsurface obstructions
- Understand expectations
Questions?

Anthony Moore
Environmental Works, Inc.
Kansas City, MO
816-285-8410
anthony@environmentalworks.com